There are modems out there, that reuse the same vid:pid for multiple
USB layouts, so there may be port type hints that are not really
applicable in all layouts.
E.g. the EM7565 in MBIM layout uses interface #0 for the MBIM port,
while in QMI layout it uses interface #0 for the QCDM port (which is
what the port type hint included in MM states). With these rules, if
we don't bind the port type hint to TTY ports only, we would be
wrongly flagging the MBIM port as possible QCDM port:
<debug> [plugin/sierra] probes required for port cdc-wdm0: 'mbim'
<debug> [cdc-wdm0/probe] no AT/QMI/MBIM probing in possible QCDM port
<debug> [cdc-wdm0/probe] port is not AT-capable
<debug> [cdc-wdm0/probe] port is not QMI-capable
<debug> [cdc-wdm0/probe] port is not MBIM-capable
<debug> [cdc-wdm0/probe] port probing finished: no more probings needed
Avoid this, by making sure all port type hints are added exclusively
to TTY ports. It's not a perfect solution, but it's enough for the
known cases.
It has the same exact format as MMBaseModemAtCommand, but its contents
are assumed heap allocated.
The only real purpose of this type is to allow defining static
constant MMBaseModemAtCommand variables without warnings when using
-Wdiscarded-qualifiers.
Useful when clamping a unsigned integer with low threshold set to 0,
which would give us compiler warnings with -Wtype-limits when using
CLAMP(), e.g.:
via/mm-broadband-modem-via.c: In function ‘handle_evdo_quality_change’:
/usr/include/glib-2.0/glib/gmacros.h:811:63: error: comparison of unsigned expression < 0 is always false [-Werror=type-limits]
811 | #define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
| ^
via/mm-broadband-modem-via.c:284:19: note: in expansion of macro ‘CLAMP’
284 | quality = CLAMP (quality, 0, 100);
| ^~~~~
Here the string is already decided to be NULL and passing
a null pointer to %s will not work
Fixes
error: '%s' directive argument is null
Signed-off-by: Khem Raj <raj.khem@gmail.com>
We keep the pflags input in mm_base_modem_grab_port() so that plugins
can use other methods to gather port type hints (e.g. querying with AT
commands as in Huawei/Telit or looking at sysfs properties as in HSO).
For standard udev tag port type hints, it will be the base modem
looking them up.
Note that there is no longer any need to ignore non-flagged ports for
those modems that require primary/secondary flags. They will be
implicitly ignored when mm_base_modem_organize_ports() decides which
ports to use, as the flagged ones are preferred over the non-flagged
ones.
We define 3 common udev tag ids to be used by all plugins:
* ID_MM_PORT_TYPE_AT_PRIMARY: the primary modem port. It will be used
for AT control and also as PPP if there is no other port flagged
explicitly to do PPP.
* ID_MM_PORT_TYPE_AT_SECONDARY: the secondary modem port. It will be
used when/if the primary port gets connected to do PPP.
* ID_MM_PORT_TYPE_PPP: the port to be used to do PPP only. This tag
makes sense only when the primary port shouldn't be used for PPP,
i.e. when there is a port dedicated to do PPP and one port
dedicated for control.
When a new USB device is hotplugged, e.g. a USB<->RS232 converter that
exposes a single ttyUSB0, these udev events happen:
add /devices/pci0000:00/0000:00:14.0/usb2/2-1 (usb/usb-device)
add /devices/pci0000:00/0000:00:14.0/usb2/2-1/2-1:1.0 (usb/usb-interface)
add /devices/pci0000:00/0000:00:14.0/usb2/2-1/2-1:1.0/ttyUSB0 (usb-serial)
add /devices/pci0000:00/0000:00:14.0/usb2/2-1/2-1:1.0/ttyUSB0/tty/ttyUSB0 (tty)
bind /devices/pci0000:00/0000:00:14.0/usb2/2-1/2-1:1.0/ttyUSB0 (usb-serial)
bind /devices/pci0000:00/0000:00:14.0/usb2/2-1/2-1:1.0 (usb/usb-interface)
bind /devices/pci0000:00/0000:00:14.0/usb2/2-1 (usb/usb-device)
Our udev rules in MM only added tags in the 'add' events, and it looks
like the only ones 'persistent' after this sequence are those of the
last event happening on the specific path.
This meant that all TTY subsystem rules (e.g. ID_MM_CANDIDATE) would
be stored for later check (e.g. if ModemManager is started after these
rules have been applied), which was ok. "udevadm info -p ..." would
show these tags correctly always.
But this also meant that the 'bind' udev event happening for the USB
device didn't get any of our device-specific tags, and so we would be
missing them (e.g. ID_MM_DEVICE_MANUAL_SCAN_ONLY) if MM is started
after the last event has happened. "udevadm info -p ..." would
not show these tags.
Modify all our rules to also run at the 'bind' events.
See, for context:
https://github.com/systemd/systemd/issues/8221
g_free and g_object_unref are in form of `void (*)(gpointer)`, which
matches the GDestroyNotify signature. An explicit GDestroyNotify cast on
g_free and g_object_unref is thus not needed.
The mm_base_modem_grab_port() now receives a MMKernelDevice directly from the
plugin, which is then stored in the MMPort corresponding to the port.
This means that we have direct access to e.g. all properties set by udev rules
everywhere, and we don't need additional GUdevClient objects (e.g. like the one
used in the Huawei plugin to detect NDISDUP support during runtime).
For virtual ports (e.g. generated during unit tests), we have a new 'generic'
kernel device object which just provides the values from the kernel device
properties given during its creation.
Instead of relying constantly on GUdevDevice objects reported by GUdev, we now
use a new generic object (MMKernelDevice) for which we provide an initial GUdev
based backend.
All ports of the same modem reported by the kernel will all be associated with
a common 'uid' (unique id), which uniquely identifies the physical device. This
logic was already in place, what we do now is avoid calling it the 'sysfs
path' of the physical device, because we may not want to use that to identify
a device.
This logic now also enables the possibility of "naming" the modems in a unique
way by setting the "ID_MM_PHYSDEV_UID" property in the "usb_device" that owns
all the ports.
E.g. a custom device has 4 modems in 4 different USB ports. The device path of
each USB device will always be the same, so the naming rules could go like this:
$ vim /usr/lib/udev/rules.d/78-mm-naming.rules
ACTION!="add|change|move", GOTO="mm_naming_rules_end"
DEVPATH=="/devices/pci0000:00/0000:00:1d.0/usb4/4-1/4-1.5/4-1.5.1", ENV{ID_MM_PHYSDEV_UID}="USB-MODEM-1"
DEVPATH=="/devices/pci0000:00/0000:00:1d.0/usb4/4-1/4-1.5/4-1.5.2", ENV{ID_MM_PHYSDEV_UID}="USB-MODEM-2"
DEVPATH=="/devices/pci0000:00/0000:00:1d.0/usb4/4-1/4-1.5/4-1.5.3", ENV{ID_MM_PHYSDEV_UID}="USB-MODEM-3"
DEVPATH=="/devices/pci0000:00/0000:00:1d.0/usb4/4-1/4-1.5/4-1.5.4", ENV{ID_MM_PHYSDEV_UID}="USB-MODEM-4"
LABEL="mm_naming_rules_end"
Each of the modems found will have a unique UID retrieved from the previous list
of rules. Then, "mmcli" has also been updated to allow using the UID instead of
the modem DBus path or index, e.g.:
$ sudo mmcli -m USB-MODEM-1
/org/freedesktop/ModemManager1/Modem/0 (device id '988d83252c0598f670c2d69d5f41e077204a92fd')
-------------------------
Hardware | manufacturer: 'ZTE CORPORATION'
| model: 'MF637'
| revision: 'BD_W7P673A3F3V1.0.0B04'
| supported: 'gsm-umts'
| current: 'gsm-umts'
| equipment id: '356516027657837'
-------------------------
System | device: 'USB-MODEM-1'
| drivers: 'option'
| plugin: 'ZTE'
| primary port: 'ttyUSB5'
| ports: 'ttyUSB5 (at)'
...
$ sudo mmcli -m USB-MODEM-1 --enable
...
Commit 7ff57f9808 introduced a change to try to
use ATTRS{bInterfaceNumber} as a common way to match by interface number, but
this logic is broken because all the rules that we use to match by interface
number (attribute in the interface device) also require matching by idVendor
and idProduct (attributes in the physdev device), and udev rules forbid matches
from more than one parent device at a time.
We could use ATTR{bInterfaceNumber} (instead of ATTRS) to tag the actual USB
interface device, but that would require a change in all the plugins to look for
the tag not in the TTY device, but in its parent.
So, recover the original behavior, where a hidden property is created containing
the first bInterfaceNumber found in the list of parent devices, and then run
the matches against idVendor and idProduct only if the hidden property is found
with the expected value.
Rules with a single condition where a parent property is checked with != don't
work properly. E.g.:
SUBSYSTEMS!="usb", GOTO="end"
or:
ATTRS{idVendor}!="abcd", GOTO="end"
Instead, we can mix both those previous parent rules and match them:
SUBSYSTEMS=="usb",ATTRS{idVendor}=="abcd", GOTO="next"
GOTO="end"
LABEL="next"
# Apply rules here
LABEL="end"
In this case both SUBSYSTEMS and ATTRS conditions apply to the parent usb_device
(idVendor attribute is only available in the usb_device), so they apply to all
ports of the same device.
This patch makes declarations bind to definitions within the same module
to prevent the potential ambiguity if referenced directly.
AddressSanitizer think they violated one definition rule, although
those symbols are accessed by address through their modules and do
not depend on the order of the libararies loaded.
See commit c79d266e62.
If the rules to tag specific USB interface numbers only apply on the PID, we'll
end up seeing that if the port has a parent with another PID, and that other
PID also has a rule, port will get tagged multiple times.