This removes libnm-glib, libnm-glib-vpn, and libnm-util for good.
The it has been replaced with libnm since NetworkManager 1.0, disabled
by default since 1.12 and no up-to-date distributions ship it for years
now.
Removing the libraries allows us to:
* Remove the horrible hacks that were in place to deal with accidental use
of both the new and old library in a single process.
* Relief the translators of maintenance burden of similar yet different
strings.
* Get rid of known bad code without chances of ever getting fixed
(libnm-glib/nm-object.c and libnm-glib/nm-object-cache.c)
* Generally lower the footprint of the releases and our workspace
If there are some really really legacy users; they can just build
libnm-glib and friends from the NetworkManager-1.16 distribution. The
D-Bus API is stable and old libnm-glib will keep working forever.
https://github.com/NetworkManager/NetworkManager/pull/308
We already need to special handle regular settings (with secrets as
GObject properties) and VPN secrets.
Next, we will also need to special handle WireGuard peers, which can
have secrets too.
Move the code to a virtual function, so that "nm-connection.c" and
"nm-setting.c" does not have explicit per-setting knowledge.
Instead of special-casing the aggregate implementation for NMSettingVpn,
delegate to a virtual function.
This will also work with other settings, that have properties/secrets
that are not GObject based properties.
While nm_setting_enumerate_values() should not be used anymore, still
extend it to make it workable also for properties that are not based on
GObject properties.
We want to emit a change notification when gendata-based settings (like
NMSettingEthtool) change. But instead of adding a separate signal, just
emit a fake "notify:name" notification.
And merge it with the version that uses no flags.
Previously, clear_secrets(_with_flags()) was only implemented
by NMSettingVpn. All other settings would only consider GObject-based
properties.
As we will add secrets that have no GObject property, call the virtual
function always, so that the setting can hook into this (for WireGuard
peers).
Add a hook so that we can overwrite the property info.
Yes, this is an API/ABI change for NMSettingClass, which is in a
header file. But this is not API that we want to support. Users must
not use this. Alternatively, I could hook the callback into
NMSettInfoSetting, but either works.
Order the code in our common way. No other changes.
- ensure to include the main header first (directly after
"nm-default.h").
- reorder function definitions: get_property(), set_property(),
*_init(), *_new(), finalize(), *_class_init().
_log_connection_get_property() is a hack, as it cannot meaningfully print complex
properties. Also, it uses _nm_setting_get_property() which can only work with GObject
base properties.
Don't assert against _nm_setting_get_property() returning success. Eventually
we should replace _nm_setting_get_property() by something better. But for the moment,
it's fine to being unable to print a property value.
Curreently all aggregate types only care about secrets.
The check for secets is done by checking for NM_SETTING_PARAM_SECRET
flag. Assert that this check is suitable to identify a secret.
NMSetting's compare_property() has and had two callers:
nm_setting_compare() and nm_setting_diff().
compare_property() accepts a NMSettingCompareFlags argument, but
at the same time, both callers have another complex (and
inconsistent!) set of pre-checks for shortcuting the call of
compare_property(): should_compare_prop().
Merge should_compare_prop() into compare_property(). This way,
nm_setting_compare() and nm_setting_diff() has less additional
code, and are simpler to follow. Especially nm_setting_compare()
is now trivial. And nm_setting_diff() is still complicated, but
not related to the question how the property compares or whether
it should be compared at all.
If you want to know whether it should be compared, all you need to do
now is follow NMSettingClass.compare_property().
This changes function pointer NMSettingClass.compare_property(),
which is public API. However, no user can actually use this (and shall
not!), because _nm_setting_class_commit_full() etc. is private API. A
user outside of libnm-core cannot create his/her own subclasses of
NMSetting, and never could in the past. So, this API/ABI change doesn't
matter.
nm_setting_compare() and nm_setting_diff() both call the virtual
function compare_property(). But their check for determining whether
to call the virtual function differs.
In a first step, merge the implementations so that the check is clearly
similar in both cases.
This bug had no effect, because NM_SETTING_COMPARE_FLAG_IGNORE_REAPPLY_IMMEDIATELY
has only one user, and it's used there in combination with
nm_setting_compare(). No caller passed this flag to nm_setting_diff().
Fixes: c9b3617c35
Secret-flags are flags, but most combinations don't actually make sense
and maybe should be rejected. Anyway, that is not done, and most places
just check that there are no unknown flags set.
Add _nm_setting_secret_flags_valid() to perform the check at one place
instead of having the implementation at various places.
Drop another use of nm_setting_enumerate_values().
Using nm_setting_enumerate_values() to duplicate a setting already
didn't work for gendata based settings.
Also, nm_setting_enumerate_values() would iterate the properties
in a particular order. We don't need that, the default order
(asciibetical sorted) is fine.
The property infos are already sorted by name. As nm_setting_enumerate_values()
now uses that information, in most cases there is nothing to sort.
The only instance is NMSettingConnection, which has a different
sort-order. At least for some purposes, not all:
- nm_setting_enumerate_values(), obviously.
- nm_setting_enumerate_values() is called by keyfile writer. That
means, keyfile writer will persist properties in a sorted way.
Cache the property list with alternative sorting also in the
setting-meta data, instead of calculating it each time.
Beside caching the information, this has the additional benefit that
this kind of sorting is now directly available, without calling
nm_setting_enumerate_values(). Meaning, we can implement keyfile writer
without using nm_setting_enumerate_values().
We should no longer use nm_connection_for_each_setting_value() and
nm_setting_for_each_value(). It's fundamentally broken as it does
not work with properties that are not backed by a GObject property
and it cannot be fixed because it is public API.
Add an internal function _nm_connection_aggregate() to replace it.
Compare the implementation of the aggregation functionality inside
libnm with the previous two checks for secret-flags that it replaces:
- previous approach broke abstraction and require detailed knowledge of
secret flags. Meaning, they must special case NMSettingVpn and
GObject-property based secrets.
If we implement a new way for implementing secrets (like we will need
for WireGuard), then this the new way should only affect libnm-core,
not require changes elsewhere.
- it's very inefficient to itereate over all settings. It involves
cloning and sorting the list of settings, and retrieve and clone all
GObject properties. Only to look at secret properties alone.
_nm_connection_aggregate() is supposed to be more flexible then just
the two new aggregate types that perform a "find-any" search. The
@arg argument and boolean return value can suffice to implement
different aggregation types in the future.
Also fixes the check of NMAgentManager for secret flags for VPNs
(NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs
is a property that either has a secret or a secret-flag. The previous
implementation would only look at present secrets and
check their flags. It wouldn't check secret-flags that are
NM_SETTING_SECRET_FLAG_NONE, but have no secret.
There are 3 kinds of secret flag implementations:
1) regular properties have a GObject property and a corresponding
"-flags" property.
2) NMSettingVpn handles this entirely differently
3) NMSettingWirelessSecurity's WEP keys, where the secret keys
share a flags property that does not follow the same naming
scheme as 1).
The getter and setter had a boolean "verifiy_secret", only to
handle 3). Drop that parameter. Don't let NMSettingWirelessSecurity
call the parent's implementation for WEP keys. Just let it handle
it directly.
We have a concept of setting and property meta-data that extends plain
GObject properties. While most properties are indeed backed by an
implemented as a GObject property, some are not.
Reuse the object property meta-data instead of fetching the list of
properties. Note that there is not much change in behavior, because
at all places where this is done, properties which are not backed by a
GObject property are skipped for the moment.
If nothing else, we save needlessly cloning the property list.
Later possibly we may no longer want to do that and add virtual
functions that can handle all properties.
We will need access to the serialization flags from within the synth_func().
That will be for WireGuard's peers. Peers are a list of complex, structured
elements, and some fields (the peer's preshared-key) are secret and
others are not. So when serializing the peers, we need to know whether
to include secrets or not.
Instead of letting _nm_setting_to_dbus() check the flags, pass them
down.
While at it, don't pass the property_name argument. Instead, pass the
entire meta-data information we have. Most synth functions don't care
about the property or the name either way. But we should not pre-filter
information that we have at hand. Just pass it to the synth function.
If the synth function would be public API, that would be a reason to be
careful about what we pass. But it isn't and it only has one caller.
So passing it along is fine. Also, do it now when adding the flags
argument, as we touch all synth implementations anyway.
We shall not shortcut the synth function. If the synth function is
unhappy about a missing NMConnection argument, then that needs to be
fixed.
So, revert 395c385b9 and fix the issue in nm_setting_wireless_get_security()
differently. I presume that is the only place that caused problems,
since the history of the patch does not clealy show what the problem
was.
This reverts commit 395c385b9b.
Note that in NetworkManager API (D-Bus, libnm, and nmcli),
the features are called "feature-xyz". The "feature-" prefix
is used, because NMSettingEthtool possibly will gain support
for options that are not only -K|--offload|--features, for
example -C|--coalesce.
The "xzy" suffix is either how ethtool utility calls the feature
("tso", "rx"). Or, if ethtool utility specifies no alias for that
feature, it's the name from kernel's ETH_SS_FEATURES ("tx-tcp6-segmentation").
If possible, we prefer ethtool utility's naming.
Also note, how the features "feature-sg", "feature-tso", and
"feature-tx" actually refer to multiple underlying kernel features
at once. This too follows what ethtool utility does.
The functionality is not yet implemented server-side.
Add a new way how NMSetting subclasses can be implemented.
Currently, most NMSetting implementations realize all their properties
via GObject properties. That has some downsides:
- the biggest one, is the large effort to add new properties.
Most of them are implemented on a one-by-one basis and they come
with additional API (like native getter functions).
It makes it cumbersome to add more properties.
- for certain properties, it's hard to encode them entirely in
a GObject property. That results in unusable API like
NM_SETTING_IP_CONFIG_ADDRESSES, NM_SETTING_BOND_OPTIONS,
NM_SETTING_USER_DATA. These complex valued properties only
exist, because we currently always need GObject properties
to even implement simple functionality. For example,
nm_setting_duplicate() is entirely implemented via
nm_setting_enumerate_values(), which can only iterate
GObject properies. There is no reason why this is necessary.
Note also how nmcli badly handles bond options and VPN
data. That is only a shortcoming of nmcli and wouldn't
need to be that way. But it happend, because we didn't
keep an open mind that settings might be more than just
accessing GObject properties.
- a major point of NMSetting is to convert to/from a GVariant
from the D-Bus API. As NMSetting needs to squeeze all values
into the static GObject structure, there is no place to
encode invalid or unknown properties. Optimally,
_nm_setting_new_from_dbus() does not loose any information
and a subsequent _nm_setting_to_dbus() can restore the original
variant. That is interesting, because we want that an older
libnm client can talk to a newer NetworkManager version. The
client needs to handle unknown properties gracefully to stay
forward compatible. However, it also should not just drop the
properties on the floor.
Note however, optimally we want that nm_setting_verify() still
can reject settings that have such unknown/invalid values. So,
it should be possible to create an NMSetting instance without
error or loosing information. But verify() should be usable to
identify such settings as invalid.
They also have a few upsides.
- libnm is heavily oriented around GObject. So, we generate
our nm-settings manual based on the gtk-doc. Note however,
how we fail to generate a useful manual for bond.options.
Also note, that there is no reason we couldn't generate
great documentation, even if the properties are not GObject
properties.
- GObject properties do give some functionality like meta-data,
data binding and notification. However, the meta-data is not
sufficient on its own. Note how keyfile and nmcli need extensive
descriptor tables on top of GObject properties, to make this
useful. Note how GObject notifications for NMSetting instances
are usually not useful, aside for data binding like nmtui does.
Also note how NMSettingBond already follows a different paradigm
than using GObject properties. Nowdays, NMSettingBond is considered
a mistake (related bug rh#1032808). Many ideas of NMSettingBond
are flawed, like exposing an inferiour API that reduces everything
to a string hash. Also, it only implemented the options hash inside
NMSettingBond. That means, if we would consider this a good style,
we would have to duplicate this approach in each new setting
implementation.
Add a new style to track data for NMSetting subclasses. It keeps
an internal hash table with all GVariant properies. Also, the
functionality is hooked into NMSetting base class, so all future
subclasses that follow this way, can benefit from this. This approach
has a few similiarties with NMSettingBond, but avoids its flaws.
With this, we also no longer need GObject properties (if we would
also implement generating useful documentation based on non-gkt-doc).
They may be added as accessors if they are useful, but there is no
need for them.
Also, handling the properties as a hash of variants invites for a
more generic approach when handling them. While we still could add
accessors that operate on a one-by-one bases, this leads to a more
generic usage where we apply common functionality to a set of properties.
Also, this is for the moment entirely internal and an implementation
detail. It's entirely up to the NMSetting subclass to make use of this
new style. Also, there are little hooks for the subclass available.
If they turn out to be necessary, they might be added. However, for
the moment, the functionality is restricted to what is useful and
necessary.
NMSetting internally already tracked a list of all proper GObject properties
and D-Bus-only properties.
Rework the tracking of the list, so that:
- instead of attaching the data to the GType of the setting via
g_type_set_qdata(), it is tracked in a static array indexed by
NMMetaSettingType. This allows to find the setting-data by simple
pointer arithmetic, instead of taking a look and iterating (like
g_type_set_qdata() does).
Note, that this is still thread safe, because the static table entry is
initialized in the class-init function with _nm_setting_class_commit().
And it only accessed by following a NMSettingClass instance, thus
the class constructor already ran (maybe not for all setting classes,
but for the particular one that we look up).
I think this makes initialization of the metadata simpler to
understand.
Previously, in a first phase each class would attach the metadata
to the GType as setting_property_overrides_quark(). Then during
nm_setting_class_ensure_properties() it would merge them and
set as setting_properties_quark(). Now, during the first phase,
we only incrementally build a properties_override GArray, which
we finally hand over during nm_setting_class_commit().
- sort the property infos by name and do binary search.
Also expose this meta data types as internal API in nm-setting-private.h.
While not accessed yet, it can prove beneficial, to have direct (internal)
access to these structures.
Also, rename NMSettingProperty to NMSettInfoProperty to use a distinct
naming scheme. We already have 40+ subclasses of NMSetting that are called
NMSetting*. Likewise, NMMetaSetting* is heavily used already. So, choose a
new, distinct name.
Previously, each (non abstract) NMSetting class had to register
its name and priority via _nm_register_setting().
Note, that libnm-core.la already links against "nm-meta-setting.c",
which also redundantly keeps track of the settings name and gtype
as well.
Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta
data.
The goal is to get rid of private data structures that track
meta data about NMSetting classes. In this case, "registered_settings"
hash. Instead, we should have one place where all this meta data
is tracked. This was, it is also accessible as internal API,
which can be useful (for keyfile).
Note that NMSettingClass has some overlap with NMMetaSettingInfo.
One difference is, that NMMetaSettingInfo is const, while NMSettingClass
is only initialized during the class_init() method. Appart from that,
it's mostly a matter of taste, whether we attach meta data to
NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed
by NMMetaSettingType.
Note, that previously, _nm_register_setting() was private API. That
means, no user could subclass a functioning NMSetting instance. The same
is still true: NMMetaSettingInfo is internal API and users cannot access
it to create their own NMSetting subclasses. But that is almost desired.
libnm is not designed, to be extensible via subclassing, nor is it
clear why that would be a useful thing to do. One day, we should remove
the NMSetting and NMSettingClass definitions from public headers. Their
only use is subclassing the types, which however does not work.
While libnm-core was linking already against nm-meta-setting.c,
nm_meta_setting_infos was unreferenced. So, this change increases
the binary size of libnm and NetworkManager (1032 bytes). Note however
that roughly the same information was previously allocated at runtime.
Properties that are backed by a GObject property are fundamentally
different.
I think it's clearer to rework the check, to first check whether
we have a param_spec, and then implement different checks.
_nm_utils_init() is a __attribute__((constructor)) function,
that is, it runs during dlopen().
On the other head, g_module_open() itself calls dlopen().
It is prone to deadlock. Don't do it.
The check is only an aggressive assertion to crash the application
if it wrongly loads libnm and libnm-util/libnm-glib at the same time.
If that happens, all is lost already. We can just as well call the
assertion later. It's not supposed to fail anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=796804
Utilize _nm_setting_to_dbus() to serialize the setting. The main reason
is that this way we can also print the more complicated values
g_strdup_value_contents() can't grok, e.g. the GArrays and GHashTables.
Some effort was spent on tidying up the results in a manner it was done
previously, instead of reducing this to a plain g_variant_print(). It
looks good that way:
Before:
vpn
service-type : "org.freedesktop.NetworkManager.VPN.Novpn" (s)
user-name : NULL (sd)
persistent : FALSE (sd)
data : ((GHashTable*) 0xc61060) (s)
secrets : ((GHashTable*) 0xdda640) (s)
timeout : 0 (sd)
After:
vpn
service-type : 'org.freedesktop.NetworkManager.VPN.Novpn'
data : {'gateway': 'novpn.example.com', 'username': 'hello'}
secrets : {'password': 'world'}
Note that no effort was spent on printing the defaults. There are
multiple ways that could be achieved, but I'm not sure it would be all
that necessary given this is really just a quick'n'dirty debugging facilty.
We commonly don't use the glib typedefs for char/short/int/long,
but their C types directly.
$ git grep '\<g\(char\|short\|int\|long\|float\|double\)\>' | wc -l
587
$ git grep '\<\(char\|short\|int\|long\|float\|double\)\>' | wc -l
21114
One could argue that using the glib typedefs is preferable in
public API (of our glib based libnm library) or where it clearly
is related to glib, like during
g_object_set (obj, PROPERTY, (gint) value, NULL);
However, that argument does not seem strong, because in practice we don't
follow that argument today, and seldomly use the glib typedefs.
Also, the style guide for this would be hard to formalize, because
"using them where clearly related to a glib" is a very loose suggestion.
Also note that glib typedefs will always just be typedefs of the
underlying C types. There is no danger of glib changing the meaning
of these typedefs (because that would be a major API break of glib).
A simple style guide is instead: don't use these typedefs.
No manual actions, I only ran the bash script:
FILES=($(git ls-files '*.[hc]'))
sed -i \
-e 's/\<g\(char\|short\|int\|long\|float\|double\)\>\( [^ ]\)/\1\2/g' \
-e 's/\<g\(char\|short\|int\|long\|float\|double\)\> /\1 /g' \
-e 's/\<g\(char\|short\|int\|long\|float\|double\)\>/\1/g' \
"${FILES[@]}"