It is useful to show nmcli-generated hotspot password (if a user does not
provide his own password). Without the option the user would have to look into
the generated profile in order to find out the password.
If the current agent disappears and we already triggered the permission check
for it then the callback for that permission check will fire after we
progressed to the next agent:
# nmcli c --wait 0 up vpn
When another agent, such as GNOME Shell is registered, then get_done_cb() for
the nmcli will be called after we started the permission check for GNOME Shell,
resulting in an assertion fail:
get_done_cb: assertion 'call_id == parent->current_call_id' failed
Otherwise we'd hit an assert and rightly so!
Program received signal SIGTRAP, Trace/breakpoint trap.
g_logv (log_domain=0x5555556b2f80 "NetworkManager", log_level=G_LOG_LEVEL_WARNING, format=<optimized out>, args=args@entry=0x7fffffffcd10) at gmessages.c:1046
1046 g_private_set (&g_log_depth, GUINT_TO_POINTER (depth));
(gdb) bt
#0 g_logv (log_domain=0x5555556b2f80 "NetworkManager", log_level=G_LOG_LEVEL_WARNING, format=<optimized out>, args=args@entry=0x7fffffffcd10) at gmessages.c:1046
#1 0x00007ffff4a4ea3f in g_log (log_domain=log_domain@entry=0x5555556b2f80 "NetworkManager", log_level=log_level@entry=G_LOG_LEVEL_WARNING, format=format@entry=0x7ffff4ac1e4c "%s") at gmessages.c:1079
#2 0x00007ffff4a4ed56 in g_warn_message (domain=domain@entry=0x5555556b2f80 "NetworkManager", file=file@entry=0x5555556aca93 "devices/nm-device.c", line=line@entry=1101,
func=func@entry=0x5555556b22e0 <__FUNCTION__.35443> "nm_device_release_one_slave", warnexpr=warnexpr@entry=0x0) at gmessages.c:1112
#3 0x00005555555ba80a in nm_device_release_one_slave (self=self@entry=0x5555559ec4c0, slave=slave@entry=0x5555559f7800, configure=configure@entry=1, reason=reason@entry=NM_DEVICE_STATE_REASON_NONE)
at devices/nm-device.c:1101
#4 0x00005555555c264b in slave_state_changed (slave=0x5555559f7800, slave_new_state=NM_DEVICE_STATE_FAILED, slave_old_state=NM_DEVICE_STATE_IP_CONFIG, reason=NM_DEVICE_STATE_REASON_NONE, self=0x5555559ec4c0)
at devices/nm-device.c:1700
#5 0x00007ffff339cdac in ffi_call_unix64 () at ../src/x86/unix64.S:76
#6 0x00007ffff339c6d5 in ffi_call (cif=cif@entry=0x7fffffffd1c0, fn=<optimized out>, rvalue=0x7fffffffd130, avalue=avalue@entry=0x7fffffffd0b0) at ../src/x86/ffi64.c:522
#7 0x00007ffff4d45678 in g_cclosure_marshal_generic (closure=0x5555559b0160, return_gvalue=0x0, n_param_values=<optimized out>, param_values=<optimized out>, invocation_hint=<optimized out>, marshal_data=0x0)
at gclosure.c:1454
#8 0x00007ffff4d44e38 in g_closure_invoke (closure=0x5555559b0160, return_value=return_value@entry=0x0, n_param_values=4, param_values=param_values@entry=0x7fffffffd3c0,
invocation_hint=invocation_hint@entry=0x7fffffffd360) at gclosure.c:768
#9 0x00007ffff4d5675d in signal_emit_unlocked_R (node=node@entry=0x55555598a6f0, detail=detail@entry=0, instance=instance@entry=0x5555559f7800, emission_return=emission_return@entry=0x0,
instance_and_params=instance_and_params@entry=0x7fffffffd3c0) at gsignal.c:3553
#10 0x00007ffff4d5e4c1 in g_signal_emit_valist (instance=instance@entry=0x5555559f7800, signal_id=signal_id@entry=72, detail=detail@entry=0, var_args=var_args@entry=0x7fffffffd5f8) at gsignal.c:3309
#11 0x00007ffff4d5ecc8 in g_signal_emit_by_name (instance=instance@entry=0x5555559f7800, detailed_signal=detailed_signal@entry=0x5555556c0405 "state-changed") at gsignal.c:3405
#12 0x00005555555bd0e0 in _set_state_full (self=self@entry=0x5555559f7800, state=state@entry=NM_DEVICE_STATE_FAILED, reason=reason@entry=NM_DEVICE_STATE_REASON_NONE, quitting=quitting@entry=0)
at devices/nm-device.c:8580
#13 0x00005555555be0e7 in nm_device_state_changed (self=self@entry=0x5555559f7800, state=state@entry=NM_DEVICE_STATE_FAILED, reason=reason@entry=NM_DEVICE_STATE_REASON_NONE) at devices/nm-device.c:8741
#14 0x00005555555c0a45 in queued_set_state (user_data=<optimized out>) at devices/nm-device.c:8765
#15 0x00007ffff4a4779a in g_main_dispatch (context=0x5555559433c0) at gmain.c:3109
#16 g_main_context_dispatch (context=context@entry=0x5555559433c0) at gmain.c:3708
#17 0x00007ffff4a47ae8 in g_main_context_iterate (context=0x5555559433c0, block=block@entry=1, dispatch=dispatch@entry=1, self=<optimized out>) at gmain.c:3779
#18 0x00007ffff4a47dba in g_main_loop_run (loop=0x555555943480) at gmain.c:3973
#19 0x000055555559713d in main (argc=1, argv=0x7fffffffdb78) at main.c:512
(gdb)
Previsously, _LOGT() could be disabled at compile time. Thus it
was different then the other macros _LOGD(), _LOGI(), etc.
OTOH, _LOGt() was the macro that always was compiled in.
Swap the name of the macros. Now the upper-case macros are always
enabled, while the lower-case macro _LOGt() is enabled depending
on compile configuration.
Device activation normally fails during one of the stages and in that
case the activation chain is implicitly interrupted.
But in some cases the device fails for external events (as a failure
of master connection) while the activation sequence is still running
and so we need to ensure that any pending activation source gets
cleared upon entering the failed state.
https://bugzilla.redhat.com/show_bug.cgi?id=1270814
When a connection should be assumed and the generated connection did not
contain a wired setting, the connection did not match due to S390 properties.
Such a connection should be allowed to match to a connection with a wired
setting with default (empty) S390 properties.
This can happen when there is a VLAN profile configured that contains a wired
setting in it and NetworkManager is (re)started.
Example/reproducer:
$ nmcli con add type vlan con-name vlan-test autoconnect no dev em1 id 44
$ nmcli con mod vlan-test eth.mtu 1450 (modify the connection, so that it has a wired setting)
$ nmcli con up vlan-test (activate the connection)
$ sudo systemctl restart NetworkManager
$ nmcli device
check that 'vlan-test' connection is active on em1.44 device
(and not the auto-generated em1.44)
https://bugzilla.redhat.com/show_bug.cgi?id=1276343
Take a missing value in keyfile/ifcfg-rh as EUI-64 to keep the compatibility
with the old conneciton. Nevertheless, the new connections should default to
the RFC7217 addresses.
RFC7217 introduces an alternative mechanism for creating addresses during
stateless IPv6 address configuration. It's supposed to create addresses whose
host part stays stable in a particular network but changes when the hosts
enters another network to mitigate possibility of tracking the host movement.
It can be used alongside RFC 4941 privacy extensions (temporary addresses)
and replaces the use of RFC 4862 interface identifiers.
The address creation mode is controlld by ip6.addr_gen_mode property
(ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64",
defaulting to "eui-64" if unspecified.
The host part of an address is computed by hashing a system-specific secret
salted with various stable values that identify the connection with a secure
hash algorithm:
RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key)
For NetworkManager we use these parameters:
* F()
SHA256 hash function.
* Prefix
This is a network part of the /64 address
* Net_Iface
We use the interface name (e.g. "eth0"). This ensures the address won't
change with the change of interface hardware.
* Network_ID
We use the connection UUID here. This ensures the salt is different for
wireless networks with a different SSID as suggested by RFC7217.
* DAD_Counter
A per-address counter that increases with each DAD failure.
* secret_key
We store the secret key in /var/lib/NetworkManager/secret_key. If it's
shorter than 128 bits then it's rejected. If the file is not present we
initialize it by fetching 256 pseudo-random bits from /dev/urandom on
first use.
Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the
IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation
and may change in future. Neither parameter is currently configurable.
NMDevice detects the DAD failures by watching the removal of tentative
addresses (happens for DAD of addresses with valid lifetime, typically
discovered addresses) or changes to addresses with dadfailed flag (permanent
addresses, typically link-local and manually configured addresses).
It retries creation of link-local addresses itself and lets RDisc know about
the rest so that it can decide if it's rdisc-managed address and retry
with a new address.
Currently NMDevice doesn't do anything useful about link-local address DAD
failures -- it just fails the link-local address addition instead of just
timing out, which happened before. RDisc just logs a warning and removes
the address from the list.
However, with RFC7217 stable privacy addresses the use of a different address
and thus a recovery from DAD failures would be possible.
It is not used externally and its use might be confusing and undesired when we
add plugin aliases. The external users should only use the name when idenfiying
the plugin and nm_vpn_plugin_info_list_find_by_service() when matchin the plugin.
Previously, we would not set the ifi_change field, so that all
flags in ifi_flags were considered. That required us to lookup
the currently set flags from the cache.
Change that, to set only the flags in the netlink message that
we want to change. This saves us a cache-lookup, but more importantly,
the cache might be out of date.
In update_connection(), pickup the configuration of
the vlan interface from platform and create the proper
NMSettingVlan setting.
And during stage1, configure the flags of the device.
Also, change all the ingress/egress mappings at once
instead of having a netlink request for each mapping.
Also, ensure we *clear* all other mappings so that
only those are set, that were configured (done by
the *gress_reset_all argument).
Previously, we could only set the ingress-qos-mappings/egress-qos-mappings.
Now also cache the mappings and expose them from the platform cache.
Also, support changing the vlan flags not only when creating the vlan
interface.
This shall contain type definitions, with similar use
to "nm-core-internal.h".
However, it should contain a minimal set, so that we can include this
header in other headers under "src/", without including the whole
"nm-core-internal.h" in headers.
Instead of using libnl-route-3 library to serialize netlink messages,
construct the netlink messages ourselves.
This has several advantages:
- Creating the netlink message ourself is actually more straight
forward then having an intermediate layer between NM and the kernel.
Now it is immediately clear, how a platform request translates to
a netlink/kernel request.
You can look at the kernel sources how a certain netlink attribute
behaves, and then it's immediately clear how to set that (and vice
versa).
- Older libnl versions might have bugs or missing features for which
we needed to workaround (often by offering a reduced/broken/untested
functionality). Now we can get rid or workaround like _nl_has_capability(),
check_support_libnl_extended_ifa_flags(), HAVE_LIBNL_INET6_TOKEN.
Another example is a libnl bug when setting vlan ingress map which
isn't even yet fixed in libnl upstream.
- We no longer need libnl-route-3 at all and can drop that runtime
requirement, saving some 400k.
Constructing the messages ourselves also gives better performance
because we don't have to create the intermediate libnl object.
- In the future we will add more link-type support which is easier
to support by basing directly on the plain kernel/netlink API,
instead of requiring also libnl3 to expose this functionality.
E.g. adding macvtap support: we already parsed macvtap properties
ourselves because of missing libnl support. To *add* macvtap
support, we also would have to do it ourself (or extend libnl).
Having a static string buffer for convenience is useful not only
for platform. Define the string buffer in NetworkManagerUtils.h,
so that all to-string functions can reuse *one* buffer.
Of course, this has the potential danger, that different
to-string method might reuse the same buffer. Hence, low-level
library functions are adviced to use their own buffer, because
an upper level might already use the global buffer for another
string.
The peer-address (IFA_ADDRESS) can also be all-zero (0.0.0.0).
That is distinct from an usual address without explicit peer-address,
which implicitly has the same peer and local address.
Previously, we treated an all-zero peer_address as having peer and
local address equal. This is especially grave, because the peer is part
of the primary key for an IPv4 address. So we not only get a property of
the address wrong, but we wrongly consider two different addresses as
one and the same.
To properly handle these addresses, we always must explicitly set the peer.
Usually, the peer-address is the same as the local address.
In case where it is not, it is the peer-address that determines
the IPv4 device-route. So we must use the peer-address.
Also, don't consider device-routes with the first octet of zero,
just like kernel does.
Also, nm_ip4_config_get_subnet_for_host() is effectively the same
as nm_ip4_config_destination_is_direct(). So drop it.