Up until now, a default-route (with prefix length zero) could not
be configured directly. The user could only set ipv4.gateway,
ipv4.never-default, ipv4.route-metric and ipv4.route-table to influence
the setting of the default-route (respectively for IPv6).
That is a problematic limitation. For one, whether a route has prefix
length zero or non-zero does not make a fundamental difference. Also,
it makes it impossible to configure all the routing attributes that one can
configure otherwise for static routes. For example, the default-route could
not be configured as "onlink", could not have a special MTU, nor could it be
placed in a dedicated routing table.
Fix that by lifting the restriction. Note that "ipv4.never-default" does
not apply to /0 manual routes. Likewise, the previous manners of
configuring default-routes ("ipv4.gateway") don't conflict with manual
default-routes.
Server-side this all the pieces are already in place to accept a default-route
as static routes. This was done by earlier commits like 5c299454b4
('core: rework tracking of gateway/default-route in ip-config').
A long time ago, NMIPRoute would assert that the prefix length is
positive. That was relaxed by commit a2e93f2de4 ('libnm: allow zero
prefix length for NMIPRoute'), already before 1.0.0. Using libnm from
before 1.0.0 would result in assertion failures.
Note that the default-route-metric-penalty based on connectivity
checking applies to all /0 routes, even these static routes. Be they
added due to DHCP, "ipv4.gateway", "ipv4.routes" or "wireguard.peer-routes".
I wonder whether doing that unconditionally is desirable, and maybe
there should be a way to opt-out/opt-in for the entire profile or even
per-routes.
https://bugzilla.redhat.com/show_bug.cgi?id=1714438
Otherwise, it just looks odd:
"not priority 31265 from 0.0.0.0/0 fwmark 0xcb87 table 52103"
Better is:
"priority 31265 not from 0.0.0.0/0 fwmark 0xcb87 table 52103"
The "not" specifier should come after the priority. It makes more sense
to read it that way. As far as parsing the string is concerned, the
order does not matter. So this change in behavior is no problem.
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/merge_requests/228
WireGuard's wq-quick configures such rules to avoid routing loops.
While we currently don't have an automatic solution for this, at least
we should support it via explicit user configuration.
One problem is that suppress_prefixlength is relatively new and kernel
might not support this attribute. That can lead to odd results, because
the NetworkManager is valid but it cannot be configured on the current
kernel. But this is a general problem, and we would require a general
solution. The solution cannot be to only support rule attributes that
are supported by the oldest possible kernel. It's not clear how much of
a problem there really is, or which general solution is required (if
any).
The tables "main", "local", and "default" have well known names.
Accept them as aliases when parsing the string representation of
the rule.
Note that iproute2 also considers /etc/iproute2/rt_tables for table
names. In particular, that allows a user to re-map the well-known names
like "main" to a different table. We never honor that file, and "main"
always means table 254.
Note that this only affects how we parse the string representation for
rules. As the representation is neither unique nor enforced to be normalized,
being more graceful here is no problem.
The point is of course that the user possibly has existing iproute2
scripts that use such keyword. This makes it simpler to copy & paste
the rule.
We no longer add these. If you use Emacs, configure it yourself.
Also, due to our "smart-tab" usage the editor anyway does a subpar
job handling our tabs. However, on the upside every user can choose
whatever tab-width he/she prefers. If "smart-tabs" are used properly
(like we do), every tab-width will work.
No manual changes, just ran commands:
F=($(git grep -l -e '-\*-'))
sed '1 { /\/\* *-\*- *[mM]ode.*\*\/$/d }' -i "${F[@]}"
sed '1,4 { /^\(#\|--\|dnl\) *-\*- [mM]ode/d }' -i "${F[@]}"
Check remaining lines with:
git grep -e '-\*-'
The ultimate purpose of this is to cleanup our files and eventually use
SPDX license identifiers. For that, first get rid of the boilerplate lines.
I think initializing structs should (almost) be always done with designated
initializers, because otherwise it's easy to get the order wrong. The
problem is that otherwise the order of fields gets additional meaning
not only for the memory layout, but also for the code that initialize
the structs.
Add a macro NM_VARIANT_ATTRIBUTE_SPEC_DEFINE() that replaces the other
(duplicate) macros. This macro also gets it right to mark the struct as
const.
This actually allows the compiler/linker to mark the memory as read-only and any
modification will cause a segmentation fault.
I would also think that it allows the compiler to put the structure directly
beside the outer constant array (in which this pointer is embedded). That is good
locality-wise.
We have certain artificial properties that not only depend on one
property alone or that depend on a property in another(!) setting.
For that, we have synth_func.
Other than that, synth_func and get_func are really fundamentally
similar and should be merged. That is because the distinction whether a
property value is "synthetized" or just based on a plain property is
minor. It's better to have the general concept of "convert property to
GVariant" in one form only.
Note that compare_property() is by default implemented based
on get_func. Hence, if get_func and synth_func get merged,
compare_property() will also require access to the NMConnection.
Also it makes some sense: some properties are artificial and actually
stored in "another" setting of the connection. But still, the property
descriptor for the property is in this setting. The example is the
"bond.interface-name" which only exists on D-Bus. It's stored as
"connection.interface-name".
I don't really like to say "exists on D-Bus only". It's still a valid
property, despite in NMSetting it's stored somehow differently (or not
at all). So, this is also just a regular property for which we have a
property-info vtable.
Does it make sense to compare such properties? Maybe. But the point is that
compare_property() function needs sometimes access to the entire
connection. So add the argument.
Replace nm_utils_str_simpletokens_extract_next() by
nm_utils_escaped_tokens_split().
nm_utils_escaped_tokens_split() should become our first choice for
parsing and tokenizing.
Note that both nm_utils_str_simpletokens_extract_next() and
nm_utils_escaped_tokens_split() need to strdup the string once,
and tokenizing takes O(n). So, they are roughtly the same performance
wise. The only difference is, that as we iterate through the tokens,
we might abort early on error with nm_utils_str_simpletokens_extract_next()
and not parse the entire string. But that is a small benefit, since we
anyway always strdup() the string (being O(n) already).
Note that to-string will no longer escape ',' and ';'. This is a change
in behavior, of unreleased API. Also note, that escaping these is no
longer necessary, because nmcli soon will also use nm_utils_escaped_tokens_*().
Another change in behavior is that nm_utils_str_simpletokens_extract_next()
treated invalid escape sequences (backslashes followed by an arbitrary
character), buy stripping the backslash. nm_utils_escaped_tokens_*()
leaves such backslashes as is, and only honors them if they are followed
by a whitespace (the delimiter) or another backslash. The disadvantage
of the new approach is that backslashes are treated differently
depending on the following character. The benefit is, that most
backslashes can now be written verbatim, not requiring them to escape
them with a double-backslash.
Yes, there is a problem with these nested escape schemes:
- the caller may already need to escape backslash in shell.
- then nmcli will use backslash escaping to split the rules at ','.
- then nm_ip_routing_rule_from_string() will honor backslash escaping
for spaces.
- then iifname and oifname use backslash escaping for nm_utils_buf_utf8safe_escape()
to express non-UTF-8 characters (because interface names are not
necessarily UTF-8).
This is only redeamed because escaping is really only necessary for very
unusual cases, if you want to embed a backslash, a space, a comma, or a
non-UTF-8 character. But if you have to, now you will be able to express
that.
The other upside of these layers of escaping is that they become all
indendent from each other:
- shell can accept quoted/escaped arguments and will unescape them.
- nmcli can do the tokenizing for ',' (and escape the content
unconditionally when converting to string).
- nm_ip_routing_rule_from_string() can do its tokenizing without
special consideration of utf8safe escaping.
- NMIPRoutingRule takes iifname/oifname as-is and is not concerned
about nm_utils_buf_utf8safe_escape(). However, before configuring
the rule in kernel, this utf8safe escape will be unescaped to get
the interface name (which is non-UTF8 binary).
(cherry picked from commit b6d0be2d3b)
We already have code that parses exactly this kinds of string:
nm_utils_parse_inaddr_prefix_bin(). Use it.
Also, it doesn't use g_strsplit_set() to separate a string at the first
'/'. Total overkill.
Add NMIPRoutingRule API with a few basic rule properties. More
properties will be added later as we want to support them.
Also, add to/from functions for string/GVariant representations.
These will be needed to persist/load/exchange rules.
The to-string format follows the `ip rule add` syntax, with the aim
to be partially compatible. Full compatibility is not possible though,
for various reasons (see code comment).
Order the code in our common way. No other changes.
- ensure to include the main header first (directly after
"nm-default.h").
- reorder function definitions: get_property(), set_property(),
*_init(), *_new(), finalize(), *_class_init().
NMSetting's compare_property() has and had two callers:
nm_setting_compare() and nm_setting_diff().
compare_property() accepts a NMSettingCompareFlags argument, but
at the same time, both callers have another complex (and
inconsistent!) set of pre-checks for shortcuting the call of
compare_property(): should_compare_prop().
Merge should_compare_prop() into compare_property(). This way,
nm_setting_compare() and nm_setting_diff() has less additional
code, and are simpler to follow. Especially nm_setting_compare()
is now trivial. And nm_setting_diff() is still complicated, but
not related to the question how the property compares or whether
it should be compared at all.
If you want to know whether it should be compared, all you need to do
now is follow NMSettingClass.compare_property().
This changes function pointer NMSettingClass.compare_property(),
which is public API. However, no user can actually use this (and shall
not!), because _nm_setting_class_commit_full() etc. is private API. A
user outside of libnm-core cannot create his/her own subclasses of
NMSetting, and never could in the past. So, this API/ABI change doesn't
matter.
Even if a direct pointer comparison should be fine, use the proper
function. GVariantType documentation says:
"Two types may not be compared by value; use g_variant_type_equal()
or g_variant_type_is_subtype_of()."
This also fixes coverity warnings.
NMSetting internally already tracked a list of all proper GObject properties
and D-Bus-only properties.
Rework the tracking of the list, so that:
- instead of attaching the data to the GType of the setting via
g_type_set_qdata(), it is tracked in a static array indexed by
NMMetaSettingType. This allows to find the setting-data by simple
pointer arithmetic, instead of taking a look and iterating (like
g_type_set_qdata() does).
Note, that this is still thread safe, because the static table entry is
initialized in the class-init function with _nm_setting_class_commit().
And it only accessed by following a NMSettingClass instance, thus
the class constructor already ran (maybe not for all setting classes,
but for the particular one that we look up).
I think this makes initialization of the metadata simpler to
understand.
Previously, in a first phase each class would attach the metadata
to the GType as setting_property_overrides_quark(). Then during
nm_setting_class_ensure_properties() it would merge them and
set as setting_properties_quark(). Now, during the first phase,
we only incrementally build a properties_override GArray, which
we finally hand over during nm_setting_class_commit().
- sort the property infos by name and do binary search.
Also expose this meta data types as internal API in nm-setting-private.h.
While not accessed yet, it can prove beneficial, to have direct (internal)
access to these structures.
Also, rename NMSettingProperty to NMSettInfoProperty to use a distinct
naming scheme. We already have 40+ subclasses of NMSetting that are called
NMSetting*. Likewise, NMMetaSetting* is heavily used already. So, choose a
new, distinct name.
- Don't use @parent_class name. This local variable (and @object_class) is
the class instance up-cast to the pointer types of the parents. The point
here is not that it is the direct parent. The point is, that it's the
NMSettingClass type.
Also, it can only be used inconsistently, in face of NMSettingIP4Config,
who's parent type is NMSettingIPConfig. Clearly, inside
nm-setting-ip4-config.c we wouldn't want to use the "parent_class"
name. Consistently rename @parent_class to @setting_class.
- Also rename the pointer to the own class to @klass. "setting_class" is also the
wrong name for that, because the right name would be something like
"setting_6lowpan_class".
However, "klass" is preferred over the latter, because we commonly create new
GObject implementations by copying an existing one. Generic names like "klass"
and "self" inside a type implementation make that simpler.
- drop useless comments like
/* virtual functions */
/* Properties */
It's better to logically and visually structure the code, and avoid trival
remarks about that. They only end up being used inconsistently. If you
even need a stronger visual separator, then an 80 char /****/ line
should be preferred.
We commonly don't use the glib typedefs for char/short/int/long,
but their C types directly.
$ git grep '\<g\(char\|short\|int\|long\|float\|double\)\>' | wc -l
587
$ git grep '\<\(char\|short\|int\|long\|float\|double\)\>' | wc -l
21114
One could argue that using the glib typedefs is preferable in
public API (of our glib based libnm library) or where it clearly
is related to glib, like during
g_object_set (obj, PROPERTY, (gint) value, NULL);
However, that argument does not seem strong, because in practice we don't
follow that argument today, and seldomly use the glib typedefs.
Also, the style guide for this would be hard to formalize, because
"using them where clearly related to a glib" is a very loose suggestion.
Also note that glib typedefs will always just be typedefs of the
underlying C types. There is no danger of glib changing the meaning
of these typedefs (because that would be a major API break of glib).
A simple style guide is instead: don't use these typedefs.
No manual actions, I only ran the bash script:
FILES=($(git ls-files '*.[hc]'))
sed -i \
-e 's/\<g\(char\|short\|int\|long\|float\|double\)\>\( [^ ]\)/\1\2/g' \
-e 's/\<g\(char\|short\|int\|long\|float\|double\)\> /\1 /g' \
-e 's/\<g\(char\|short\|int\|long\|float\|double\)\>/\1/g' \
"${FILES[@]}"
Similarly to what systemd-resolved does, introduce the concept of
"routing" domain, which is a domain in the search list that is used
only to decide the interface over which a query must be forwarded, but
is not used to complete unqualified host names. Routing domains are
those starting with a tilde ('~') before the actual domain name.
Domains without the initial tilde are used both for completing
unqualified names and for the routing decision.
The order in which the attribute names are returns should
be defined and stable. Sort them and re-use the helper functions.
Sorting is good, because it gives a consistent order. Maybe we don't
want to commit to this in the API, officially the order is still
arbitrary. In practice, we rely on the order of attribute names
when converting the attributes to a string. The same configuration
should produce the same string representation.
That doesn't mean we commit to a fixed order in the string
representation. It does not mean, that the order must always be this
way, we can still change it. But between multiple runs of the same
binary, the order should be stable.
Note that our hash tables are seeded with a random number. Hence,
their order is not only abitrary, it is also unstable and changes
for each run of the application.
"no_value" indicates that the the attribute is a single word, not a
key=value pair. If the type is BOOLEAN then the attribute is considered
true, if it's a STRING then the key is used instead of a value.
"consumes_rest" indicates that the particular key takes the unparseable
tail of the string for a value.
This allows parsing tc-style strings. Consider this filter:
,------ regular key/value pair
,-----'----.
root handle 1234: matchall action simple foo bar baz
| | `-----------.-----------'
| | `- "", STRING, consumes_rest
| `------------------- "kind", STRING, no_value
`-------------------------------------- "root', BOOLEAN, no_value
We also do this for libnm and libnm-core, where it causes visible changes
in behavior. But if somebody would rely on the hashing implementation
for hash tables, it would be seriously flawed.
Kernel doesn't support it for IPv6.
This is especially useful, if you combine static routes
with DHCP. In that case, you might want to get the device-route
to the gateway automatically, but add a static-route for it.
We want to support large number of routes. Reduce the number
of copies, by adding internal accessor functions.
Also, work around a complaint from coverity:
46. NetworkManager-1.9.2/libnm-core/nm-utils.c:1987:
dereference: Dereferencing a null pointer "names".