g_clear_pointer() would always cast the destroy notify function
pointer to GDestroyNotify. That means, it lost some type safety, like
GPtrArray *ptr_arr = ...
g_clear_pointer (&ptr_arr, g_array_unref);
Since glib 2.58 ([1]), g_clear_pointer() is also more type safe. But
this is not used by NetworkManager, because we don't set
GLIB_VERSION_MIN_REQUIRED to 2.58.
[1] f9a9902aac
We have nm_clear_pointer() to avoid this issue for a long time (pre
1.12.0). Possibly we should redefine in our source tree g_clear_pointer()
as nm_clear_pointer(). However, I don't like to patch glib functions
with our own variant. Arguably, we do patch g_clear_error() in
such a manner. But there the point is to make the function inlinable.
Also, nm_clear_pointer() returns a boolean that indicates whether
anything was cleared. That is sometimes useful. I think we should
just consistently use nm_clear_pointer() instead, which does always
the preferable thing.
Replace:
sed 's/\<g_clear_pointer *(\([^;]*\), *\([a-z_A-Z0-9]\+\) *)/nm_clear_pointer (\1, \2)/g' $(git grep -l g_clear_pointer) -i
_nm_setting_ovs_interface_verify_interface_type() does verify and
normalize both. Especially for verify, it's useful to run the operation
without having a NMSettingOvsInterface instance, because we might
want to know how normalization would react, if we had a
NMSettingOvsInterface instance.
Allow for that.
Fully sort the settings in _nm_connection_verify(). Previously, only the
NMSettingConnection instance was sorted first (as required). The remaining
settings were in undefined order. That means, we would validate settings
in undefined order, and if multiple settings have an issue, the reported
error would be undefined.
Instead, use nm_connection_get_settings() which fully sorts the settings
(and of course, sorts NMSettingConnection first as we require it).
Also, this way we no longer need to allocate multiple GSList instances
but only malloc() one array large enough to contain all settings.
OVS bridges and ports do not have the length limitation of 15 bytes, the
only requirements are that all chars must be alphanumeric and not be
forward or backward slashes.
For OVS interfaces only 'patch' types do not have the length limit, all
the other types do (according to whether they have a corresponding
kernel link or not).
Add related unit test.
https://bugzilla.redhat.com/show_bug.cgi?id=1788432
and _nm_utils_inet6_ntop() instead of nm_utils_inet6_ntop().
nm_utils_inet4_ntop()/nm_utils_inet6_ntop() are public API of libnm.
For one, that means they are only available in code that links with
libnm/libnm-core. But such basic helpers should be available everywhere.
Also, they accept NULL as destination buffers. We keep that behavior
for potential libnm users, but internally we never want to use the
static buffers. This patch needs to take care that there are no callers
of _nm_utils_inet[46]_ntop() that pass NULL buffers.
Also, _nm_utils_inet[46]_ntop() are inline functions and the compiler
can get rid of them.
We should consistently use the same variant of the helper. The only
downside is that the "good" name is already taken. The leading
underscore is rather ugly and inconsistent.
Also, with our internal variants we can use "static array indices in
function parameter declarations" next. Thereby the compiler helps
to ensure that the provided buffers are of the right size.
This will make NetworkManager look up APN, username, and password in the
Mobile Broadband Provider database.
It is mutually exclusive with the apn, username and password properties.
If that is the case, the connection will be normalized to
auto-config=false. This makes it convenient for the user to turn off the
automatism by just setting the apn.
nmtst_connection_assert_unchanging() registers to the changed signals
and asserts that they are not invoked. The purpose is that sometimes
we want to keep a reference to an NMConnection and be sure that it does
not get modified. This allows everybody to keep a reference to the very
same connection instance without cloning it -- provided they too promise
not to change it. This assert is to ensure that.
Note that NMSimpleConnection.dispose() clears the secrets and thus upon
destruction the assertion fails. At that point, the assertion is no longer
relevant, because the purpose was to ensure that no alive instances gets
modified. While destroying the instance, it's fine to modify it (nobody should
have a reference to it anymore).
This avoids the assertion failure when destroying a NMSimpleConnection with secrets
that is set with nmtst_connection_assert_unchanging().
- in _nm_connection_ensure_normalized() allow also to only check that
the UUID is as expected, without really resetting it.
- split the normalization part out of nm_connection_normalize() and
reuse it in _nm_connection_ensure_normalized(). As we already verified
the connnection, we know that normalization is due and don't need to
verify again.
We no longer add these. If you use Emacs, configure it yourself.
Also, due to our "smart-tab" usage the editor anyway does a subpar
job handling our tabs. However, on the upside every user can choose
whatever tab-width he/she prefers. If "smart-tabs" are used properly
(like we do), every tab-width will work.
No manual changes, just ran commands:
F=($(git grep -l -e '-\*-'))
sed '1 { /\/\* *-\*- *[mM]ode.*\*\/$/d }' -i "${F[@]}"
sed '1,4 { /^\(#\|--\|dnl\) *-\*- [mM]ode/d }' -i "${F[@]}"
Check remaining lines with:
git grep -e '-\*-'
The ultimate purpose of this is to cleanup our files and eventually use
SPDX license identifiers. For that, first get rid of the boilerplate lines.
We have certain artificial properties that not only depend on one
property alone or that depend on a property in another(!) setting.
For that, we have synth_func.
Other than that, synth_func and get_func are really fundamentally
similar and should be merged. That is because the distinction whether a
property value is "synthetized" or just based on a plain property is
minor. It's better to have the general concept of "convert property to
GVariant" in one form only.
Note that compare_property() is by default implemented based
on get_func. Hence, if get_func and synth_func get merged,
compare_property() will also require access to the NMConnection.
Also it makes some sense: some properties are artificial and actually
stored in "another" setting of the connection. But still, the property
descriptor for the property is in this setting. The example is the
"bond.interface-name" which only exists on D-Bus. It's stored as
"connection.interface-name".
I don't really like to say "exists on D-Bus only". It's still a valid
property, despite in NMSetting it's stored somehow differently (or not
at all). So, this is also just a regular property for which we have a
property-info vtable.
Does it make sense to compare such properties? Maybe. But the point is that
compare_property() function needs sometimes access to the entire
connection. So add the argument.
Traditionally, the MTU in "datagram" transport mode was restricted to
2044. That is no longer the case, relax that.
In fact, choose a very large maximum and don't differenciate between
"connected" mode (they now both use now 65520). This is only the
limitation of the connection profile. Whether setting such large MTUs
actually works must be determined when activating the profile.
Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044.
This was raised to 4092 in rh#1186498. It is suggested to raise it further
in bug rh#1647541.
In general, kernel often does not allow setting large MTUs. And even if it
allows it, it may not work because it also requires the entire network to
be configured accordingly. But that means, it is generally not helpful to
limit the MTU in the connection profile too strictly. Just allow large
MTUs, we need to see at activation time whether the configuration works.
Note also that all other setting types don't validate the range for MTU at
all.
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334
(rdma-core: raise limit from 2044 to 4092 in ifup-ib)
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541
(rdma-core: raise limit beyond 4092 in ifup-ib)
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4
(rdma-core: MTU related discussion)
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869
(NetworkManager bug about this topic, but with lots of unrelated
discussion. See in particular #c16)
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
For now only add the core settings, no peers' data.
To support peers and the allowed-ips of the peers is more complicated
and will be done later. It's more complicated because these are nested
lists (allowed-ips) inside a list (peers). That is quite unusual and to
conveniently support that in D-Bus API, in keyfile format, in libnm,
and nmcli, is a effort.
Also, it's further complicated by the fact that each peer has a secret (the
preshared-key). Thus we probably need secret flags for each peer, which
is a novelty as well (until now we require a fixed set of secrets per
profile that is well known).
We already need to special handle regular settings (with secrets as
GObject properties) and VPN secrets.
Next, we will also need to special handle WireGuard peers, which can
have secrets too.
Move the code to a virtual function, so that "nm-connection.c" and
"nm-setting.c" does not have explicit per-setting knowledge.
- use cleanup attribute to free memory
- return floating reference from _nm_connection_for_each_secret().
It's more idiomatic that a function that constructs a variant and
returns it, returns a floating variant.
_nm_connection_for_each_secret() (formerly for_each_secret()) and
_nm_connection_find_secret() (formerly find_secret()) operate on a
GVariant of secrets. For that, they implement certain assumptions
of how to handle secrets. For example, it must special-case VPN settings,
because there is no generic abstraction to handle regular secret and VPN
secrets the same.
Such special casing should only be done in libnm-core, at one place.
Move the code to libnm-core as internal API.
There are two callers that are concerned with disconnecting/releasing a
setting:
- _setting_release_hfr() (formerly _setting_release())
- _nm_connection_add_setting() for the @s_old setting
Compared to one caller that connects/adds a setting (_nm_connection_add_setting()).
Refactor the two callers to use the same helper function
(_setting_release()) so that the implementation of how to release a
setting is at one place.
This patch was originally done when adding another signal to NMSetting.
That did not happen (yet), but the refactoring still makes sense.
Order the code in our common way. No other changes.
- ensure to include the main header first (directly after
"nm-default.h").
- reorder function definitions: get_property(), set_property(),
*_init(), *_new(), finalize(), *_class_init().
We should no longer use nm_connection_for_each_setting_value() and
nm_setting_for_each_value(). It's fundamentally broken as it does
not work with properties that are not backed by a GObject property
and it cannot be fixed because it is public API.
Add an internal function _nm_connection_aggregate() to replace it.
Compare the implementation of the aggregation functionality inside
libnm with the previous two checks for secret-flags that it replaces:
- previous approach broke abstraction and require detailed knowledge of
secret flags. Meaning, they must special case NMSettingVpn and
GObject-property based secrets.
If we implement a new way for implementing secrets (like we will need
for WireGuard), then this the new way should only affect libnm-core,
not require changes elsewhere.
- it's very inefficient to itereate over all settings. It involves
cloning and sorting the list of settings, and retrieve and clone all
GObject properties. Only to look at secret properties alone.
_nm_connection_aggregate() is supposed to be more flexible then just
the two new aggregate types that perform a "find-any" search. The
@arg argument and boolean return value can suffice to implement
different aggregation types in the future.
Also fixes the check of NMAgentManager for secret flags for VPNs
(NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs
is a property that either has a secret or a secret-flag. The previous
implementation would only look at present secrets and
check their flags. It wouldn't check secret-flags that are
NM_SETTING_SECRET_FLAG_NONE, but have no secret.
NMConnection keeps a list (hash table) of all settings.
There are two lookup methods to find a setting in a connection:
- nm_connection_get_setting() by GType
- nm_connection_get_setting_by_name() by name
Note, that nm_connection_get_setting_by_name() first converts the
name to a GType, and then looks up the setting by GType.
But then, nm_connection_get_setting() would again convert the GType to
the type name, and hash the name. That is pointless, just index by GType
directly.
Maybe, using a hash table is anyway overkill because commonly there are
only a handful of settings in a connection. Regardless of that, change
the hashing.
Note that NMSettingEthtool and NMSettingMatch don't have such
functions either.
We have API
nm_connection_get_setting (NMConnection *, GType)
nm_connection_get_setting_by_name (NMConnection *, const char *)
which can be used generically, meaning: the requested setting type
is an argument to the function. That is generally more useful and
flexible.
Don't add API which duplicates existing functionality and is (arguably)
inferiour. Drop it now. This is an ABI/API break for the current development
cycle where the 1.14.0 API is still unstable. Indeed it's already after
1.14-rc1, which is ugly. But it's also unlikely that somebody already uses
this API/ABI and is badly impacted by this change.
Note that nm_connection_get_setting() and nm_connection_get_setting_by_name()
are slightly inconvenient in C still, because they usually require a cast.
We should fix that by changing the return type to "void *". Such
a change may be possibly any time without breaking API/ABI (almost, it'd
be an API change when taking a function pointer without casting).
(cherry picked from commit a10156f516)
Add a new option that allows to activate a profile multiple times
(at the same time). Previoulsy, all profiles were implicitly
NM_SETTING_CONNECTION_MULTI_CONNECT_SINGLE, meaning, that activating
a profile that is already active will deactivate it first.
This will make more sense, as we also add more match-options how
profiles can be restricted to particular devices. We already have
connection.type, connection.interface-name, and (ethernet|wifi).mac-address
to restrict a profile to particular devices. For example, it is however
not possible to specify a wildcard like "eth*" to match a profile to
a set of devices by interface-name. That is another missing feature,
and once we extend the matching capabilities, it makes more sense to
activate a profile multiple times.
See also https://bugzilla.redhat.com/show_bug.cgi?id=997998, which
previously changed that a connection is restricted to a single activation
at a time. This work relaxes that again.
This only adds the new property, it is not used nor implemented yet.
https://bugzilla.redhat.com/show_bug.cgi?id=1555012
Utilize _nm_setting_to_dbus() to serialize the setting. The main reason
is that this way we can also print the more complicated values
g_strdup_value_contents() can't grok, e.g. the GArrays and GHashTables.
Some effort was spent on tidying up the results in a manner it was done
previously, instead of reducing this to a plain g_variant_print(). It
looks good that way:
Before:
vpn
service-type : "org.freedesktop.NetworkManager.VPN.Novpn" (s)
user-name : NULL (sd)
persistent : FALSE (sd)
data : ((GHashTable*) 0xc61060) (s)
secrets : ((GHashTable*) 0xdda640) (s)
timeout : 0 (sd)
After:
vpn
service-type : 'org.freedesktop.NetworkManager.VPN.Novpn'
data : {'gateway': 'novpn.example.com', 'username': 'hello'}
secrets : {'password': 'world'}
Note that no effort was spent on printing the defaults. There are
multiple ways that could be achieved, but I'm not sure it would be all
that necessary given this is really just a quick'n'dirty debugging facilty.
Note the special error codes NM_UTILS_ERROR_CONNECTION_AVAILABLE_*.
This will be used to determine, whether the profile is fundamentally
incompatible with the device, or whether just some other properties
mismatch. That information will be importand during a plain `nmcli
connection up`, where NetworkManager searches all devices for a device
to activate. If no device is found (and multiple errors happened),
we want to show the error that is most likely relevant for the user.
Also note, how NMDevice's check_connection_compatible() uses the new
class field "device_class->connection_type_check_compatible" to simplify
checks for compatible profiles.
The error reason is still unused.