Also, plan right away to backport this symbol all the way back to
1.14.8. As such, we only need to add it once, with the right linker
version "libnm_1_14_8".
But still, the symbols first appears on a major release 1.20.0.
It's rather limiting if we have no API to ask NMSettingEthtool which
options are set.
Note that currently NMSettingEthtool only supports offload features.
In the future, it should also support other options like coalesce
or ring options. Hence, this returns all option names, not only
features.
If a caller needs to know whether the name is an option name, he/she
should call nm_ethtool_optname_is_feature().
We no longer add these. If you use Emacs, configure it yourself.
Also, due to our "smart-tab" usage the editor anyway does a subpar
job handling our tabs. However, on the upside every user can choose
whatever tab-width he/she prefers. If "smart-tabs" are used properly
(like we do), every tab-width will work.
No manual changes, just ran commands:
F=($(git grep -l -e '-\*-'))
sed '1 { /\/\* *-\*- *[mM]ode.*\*\/$/d }' -i "${F[@]}"
sed '1,4 { /^\(#\|--\|dnl\) *-\*- [mM]ode/d }' -i "${F[@]}"
Check remaining lines with:
git grep -e '-\*-'
The ultimate purpose of this is to cleanup our files and eventually use
SPDX license identifiers. For that, first get rid of the boilerplate lines.
Completely refactor the team/JSON handling in libnm's NMSettingTeam and
NMSettingTeamPort.
- team handling was added as rh#1398925. The goal is to have a more
convenient way to set properties than constructing JSON. This requires
libnm to implement the hard task of parsing JSON (and exposing well-understood
properties) and generating JSON (based on these "artificial" properties).
But not only libnm. In particular nmcli and the D-Bus API must make this
"simpler" API accessible.
- since NMSettingTeam and NMSettingTeamPort are conceptually the same,
add "libnm-core/nm-team-utils.h" and NMTeamSetting that tries to
handle the similar code side-by-sdie.
The setting classes now just delegate for everything to NMTeamSetting.
- Previously, there was a very fuzzy understanding of the provided
JSON config. Tighten that up, when setting a JSON config it
regenerates/parses all other properties and tries to make the
best of it. When modifying any abstraction property, the entire
JSON config gets regenerated. In particular, don't try to merge
existing JSON config with the new fields. If the user uses the
abstraction API, then the entire JSON gets replaced.
For example note that nm_setting_team_add_link_watcher() would not
be reflected in the JSON config (a bug). That only accidentally worked
because client would serializing the changed link watcher to
GVariant/D-Bus, then NetworkManager would set it via g_object_set(),
which would renerate the JSON, and finally persist it to disk. But
as far as libnm is concerned, nm_setting_team_add_link_watcher() would
bring the settings instance in an inconsistent state where JSON and
the link watcher property disagree. Setting any property must
immediately update both the JSON and the abstraction API.
- when constucting a team setting from D-Bus, we would previously parse
both "config" and abstraction properties. That is wrong. Since our
settings plugins only support JSON, all information must be present
in the JSON config anyway. So, when "config" is present, only the JSON
must be parsed. In the best case, the other information is redudant and
contributes nothing. In the worse case, they information differs
(which might happen if the client version differs from the server
version). As the settings plugin only supports JSON, it's wrong to
consider redundant, differing information from D-Bus.
- we now only convert string to JSON or back when needed. Previously,
setting a property resulted in parsing several JSON multiple times
(per property). All operations should now scale well and be reasonably
efficient.
- also the property-changed signals are now handled correctly. Since
NMTeamSetting knows the current state of all attributes, it can emit
the exact property changed signals for what changed.
- we no longer use libjansson to generate the JSON. JSON is supposed
to be a machine readable exchange format, hence a major goal is
to be easily handled by applications. While parsing JSON is not so
trivial, writing a well-known set of values to JSON is.
The advantage is that when you build libnm without libjansson support,
then we still can convert the artificial properties to JSON.
- Requiring libjansson in libnm is a burden, because most of the time
it is not needed (as most users don't create team configurations). With
this change we only require it to parse the team settings (no longer to
write them). It should be reasonably simple to use a more minimalistic
JSON parser that is sufficient for us, so that we can get rid of the
libjansson dependency (for libnm). This also avoids the pain that we have
due to the symbol collision of libjansson and libjson-glib.
https://bugzilla.redhat.com/show_bug.cgi?id=1691619
I also like this because it's non-obvious that subscription IDs from
GDBusConnection are "guint" (contrary to signal handler IDs which are
"gulong"). So, by using this API you get a compiler error when using the
wrong type.
In the past, when switching to nm_clear_g_signal_handler() this uncovered
multiple bugs where the wrong type was used to hold the ID.
"libnm-core" implements common functionality for "NetworkManager" and
"libnm".
Note that clients like "nmcli" cannot access the internal API provided
by "libnm-core". So, if nmcli wants to do something that is also done by
"libnm-core", , "libnm", or "NetworkManager", the code would have to be
duplicated.
Instead, such code can be in "libnm-libnm-core-{intern|aux}.la".
Note that:
0) "libnm-libnm-core-intern.la" is used by libnm-core itsself.
On the other hand, "libnm-libnm-core-aux.la" is not used by
libnm-core, but provides utilities on top of it.
1) they both extend "libnm-core" with utlities that are not public
API of libnm itself. Maybe part of the code should one day become
public API of libnm. On the other hand, this is code for which
we may not want to commit to a stable interface or which we
don't want to provide as part of the API.
2) "libnm-libnm-core-intern.la" is statically linked by "libnm-core"
and thus directly available to "libnm" and "NetworkManager".
On the other hand, "libnm-libnm-core-aux.la" may be used by "libnm"
and "NetworkManager".
Both libraries may be statically linked by libnm clients (like
nmcli).
3) it must only use glib, libnm-glib-aux.la, and the public API
of libnm-core.
This is important: it must not use "libnm-core/nm-core-internal.h"
nor "libnm-core/nm-utils-private.h" so the static library is usable
by nmcli which couldn't access these.
Note that "shared/nm-meta-setting.c" is an entirely different case,
because it behaves differently depending on whether linking against
"libnm-core" or the client programs. As such, this file must be compiled
twice.
From the files under "shared/nm-utils" we build an internal library
that provides glib-based helper utilities.
Move the files of that basic library to a new subdirectory
"shared/nm-glib-aux" and rename the helper library "libnm-core-base.la"
to "libnm-glib-aux.la".
Reasons:
- the name "utils" is overused in our code-base. Everything's an
"utils". Give this thing a more distinct name.
- there were additional files under "shared/nm-utils", which are not
part of this internal library "libnm-utils-base.la". All the files
that are part of this library should be together in the same
directory, but files that are not, should not be there.
- the new name should better convey what this library is and what is isn't:
it's a set of utilities and helper functions that extend glib with
funcitonality that we commonly need.
There are still some files left under "shared/nm-utils". They have less
a unifying propose to be in their own directory, so I leave them there
for now. But at least they are separate from "shared/nm-glib-aux",
which has a very clear purpose.
We built (among others) two libraries from the sources in "shared/nm-utils":
"libnm-utils-base.la" and "libnm-utils-udev.la".
It's confusing. Instead use directories so there is a direct
correspondence between these internal libraries and the source files.
In some cases it is convenient to specify ranges of bridge vlans, as
already supported by iproute2 and natively by kernel. With this commit
it becomes possible to add a range in this way:
nmcli connection modify eth0-slave +bridge-port.vlans "100-200 untagged"
vlan ranges can't be PVIDs because only one PVID vlan can exist.
https://bugzilla.redhat.com/show_bug.cgi?id=1652910
This removes libnm-glib, libnm-glib-vpn, and libnm-util for good.
The it has been replaced with libnm since NetworkManager 1.0, disabled
by default since 1.12 and no up-to-date distributions ship it for years
now.
Removing the libraries allows us to:
* Remove the horrible hacks that were in place to deal with accidental use
of both the new and old library in a single process.
* Relief the translators of maintenance burden of similar yet different
strings.
* Get rid of known bad code without chances of ever getting fixed
(libnm-glib/nm-object.c and libnm-glib/nm-object-cache.c)
* Generally lower the footprint of the releases and our workspace
If there are some really really legacy users; they can just build
libnm-glib and friends from the NetworkManager-1.16 distribution. The
D-Bus API is stable and old libnm-glib will keep working forever.
https://github.com/NetworkManager/NetworkManager/pull/308
Add NMIPRoutingRule API with a few basic rule properties. More
properties will be added later as we want to support them.
Also, add to/from functions for string/GVariant representations.
These will be needed to persist/load/exchange rules.
The to-string format follows the `ip rule add` syntax, with the aim
to be partially compatible. Full compatibility is not possible though,
for various reasons (see code comment).
At a few places we checked whether neighbor->attrs was non-NULL.
That is not necessary, unless we'd like to catch some dangling/invalid
pointers. The attrs hash is always set otherwise.
Instead of just dropping the check, add a NM_IS_LLDP_NEIGHBOR() macro
(inline function).
For one, just reassigning copy->attrs leaks the previous
hash table. Fix that.
Also, NMLldpNeighbor instances are not immutable. I think that
is an uglyness, and it would be preferable that they can be sealed.
A sealed object could safely share/ref the internal hash-table. However,
as it is, we cannot just have two NMLldpNeighbor instances share the
same hash-table. Do a full copy.
Add the const qualifier to the attribute name in LLDP API functions so
that const strings and string literals are accepted. This change is
backwards compatible for existing users of the API.
This removes libnm-glib, libnm-glib-vpn, and libnm-util for good.
The it has been replaced with libnm since NetworkManager 1.0, disabled
by default since 1.12 and no up-to-date distributions ship it for years
now.
Removing the libraries allows us to:
* Remove the horrible hacks that were in place to deal with accidental use
of both the new and old library in a single process.
* Relief the translators of maintenance burden of similar yet different
strings.
* Get rid of known bad code without chances of ever getting fixed
(libnm-glib/nm-object.c and libnm-glib/nm-object-cache.c)
* Generally lower the footprint of the releases and our workspace
If there are some really really legacy users; they can just build
libnm-glib and friends from the NetworkManager-1.16 distribution. The
D-Bus API is stable and old libnm-glib will keep working forever.
https://github.com/NetworkManager/NetworkManager/pull/308
nm_device_get_device_type would report the device type as it was send on
DBus, while fetching the property would mean that only a known device
types is reported.
Make both results consistent by coercing in nm_device_get_device_type
rather than when setting the property.
(cherry picked from commit a6a185ba00)
The device type was set to the GType rather than a new value in the
NMDeviceType enum.
Add the corresponding enum entry, fix the device type and set the
routing priority to the same value as generic devices.
(cherry picked from commit 8d9365a973)
A NetworkManager client requires an API to validate and decode
a base64 secret -- like it is used by WireGuard. If we don't have
this as part of the API, it's inconvenient. Expose it.
Rename it from _nm_utils_wireguard_decode_key(), to give it a more
general name.
Also, rename _nm_utils_wireguard_normalize_key() to
nm_utils_base64secret_normalize(). But this one we keep as internal
API. The user will care more about validating and decoding the base64
key. To convert the key back to base64, we don't need a public API in
libnm.
This is another ABI change since 1.16-rc1.
(cherry picked from commit e46ba01867)
For now only add the core settings, no peers' data.
To support peers and the allowed-ips of the peers is more complicated
and will be done later. It's more complicated because these are nested
lists (allowed-ips) inside a list (peers). That is quite unusual and to
conveniently support that in D-Bus API, in keyfile format, in libnm,
and nmcli, is a effort.
Also, it's further complicated by the fact that each peer has a secret (the
preshared-key). Thus we probably need secret flags for each peer, which
is a novelty as well (until now we require a fixed set of secrets per
profile that is well known).
Previously, Wi-Fi scans uses polkit action
"org.freedesktop.NetworkManager.network-control". This is introduced
in commit 5e3e19d0. But in a system with restrict polkit rules, for
example "org.freedesktop.NetworkManager.network-control" was set as
auth_admin. When you open the network panel of GNOME Control Center, a
polkit dialog will keep showing up asking for admin password, as GNOME
Control Center scans the Wi-Fi list every 15 seconds.
Fix that by adding a new polkit action
"org.freedesktop.NetworkManager.wifi.scan" so that distributions can
add specific rule to allow Wi-Fi scans.
[thaller@redhat.com: fix macro in "shared/nm-common-macros.h"]
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/merge_requests/68
While this can be considered a property of the P2P device, the API will
require setting it through the settings when activating a connection. As
such, having a (read only) property on the device is not very useful, so
remove it again.