Files
NetworkManager/shared/nm-utils/nm-time-utils.c
Thomas Haller 32073288e8 shared: thread safe initialization of nm_utils_get_monotonic_timestamp*()
nm_utils_get_monotonic_timestamp*() inherrently use static data. Let's
initialize it in a thread safe manner.

nm_utils_get_monotonic_timestamp*() are a fundamental utility function
that should work correctly in all cases. Such a low level function should
be thread safe.
2018-11-28 16:13:04 +01:00

274 lines
8.7 KiB
C

/* NetworkManager -- Network link manager
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
* (C) Copyright 2018 Red Hat, Inc.
*/
#include "nm-default.h"
#include "nm-time-utils.h"
/*****************************************************************************/
typedef struct {
/* the offset to the native clock, in seconds. */
gint64 offset_sec;
clockid_t clk_id;
} GlobalState;
static const GlobalState *volatile p_global_state;
static const GlobalState *
_t_init_global_state (void)
{
static GlobalState global_state = { };
static gsize init_once = 0;
const GlobalState *p;
clockid_t clk_id;
struct timespec tp;
gint64 offset_sec;
int r;
clk_id = CLOCK_BOOTTIME;
r = clock_gettime (clk_id, &tp);
if (r == -1 && errno == EINVAL) {
clk_id = CLOCK_MONOTONIC;
r = clock_gettime (clk_id, &tp);
}
/* The only failure we tolerate is that CLOCK_BOOTTIME is not supported.
* Other than that, we rely on kernel to not fail on this. */
g_assert (r == 0);
g_assert (tp.tv_nsec >= 0 && tp.tv_nsec < NM_UTILS_NS_PER_SECOND);
/* Calculate an offset for the time stamp.
*
* We always want positive values, because then we can initialize
* a timestamp with 0 and be sure, that it will be less then any
* value nm_utils_get_monotonic_timestamp_*() might return.
* For this to be true also for nm_utils_get_monotonic_timestamp_s() at
* early boot, we have to shift the timestamp to start counting at
* least from 1 second onward.
*
* Another advantage of shifting is, that this way we make use of the whole 31 bit
* range of signed int, before the time stamp for nm_utils_get_monotonic_timestamp_s()
* wraps (~68 years).
**/
offset_sec = (- ((gint64) tp.tv_sec)) + 1;
if (!g_once_init_enter (&init_once)) {
/* there was a race. We expect the pointer to be fully initialized now. */
p = g_atomic_pointer_get (&p_global_state);
g_assert (p);
return p;
}
global_state.offset_sec = offset_sec;
global_state.clk_id = clk_id;
p = &global_state;
g_atomic_pointer_set (&p_global_state, p);
g_once_init_leave (&init_once, 1);
_nm_utils_monotonic_timestamp_initialized (&tp,
p->offset_sec,
p->clk_id == CLOCK_BOOTTIME);
return p;
}
#define _t_get_global_state() \
({ \
const GlobalState *_p; \
\
_p = g_atomic_pointer_get (&p_global_state); \
(G_LIKELY (_p) ? _p : _t_init_global_state ()); \
})
#define _t_clock_gettime_eval(p, tp) \
({ \
struct timespec *const _tp = (tp); \
const GlobalState *const _p2 = (p); \
int _r; \
\
nm_assert (_tp); \
\
_r = clock_gettime (_p2->clk_id, _tp); \
\
nm_assert (_r == 0); \
nm_assert (_tp->tv_nsec >= 0 && _tp->tv_nsec < NM_UTILS_NS_PER_SECOND); \
\
_p2; \
})
#define _t_clock_gettime(tp) \
_t_clock_gettime_eval (_t_get_global_state (), tp);
/*****************************************************************************/
/**
* nm_utils_get_monotonic_timestamp_ns:
*
* Returns: a monotonically increasing time stamp in nanoseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ns (void)
{
const GlobalState *p;
struct timespec tp;
p = _t_clock_gettime (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + p->offset_sec) * NM_UTILS_NS_PER_SECOND +
tp.tv_nsec;
}
/**
* nm_utils_get_monotonic_timestamp_us:
*
* Returns: a monotonically increasing time stamp in microseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_us (void)
{
const GlobalState *p;
struct timespec tp;
p = _t_clock_gettime (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + p->offset_sec) * ((gint64) G_USEC_PER_SEC) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/G_USEC_PER_SEC));
}
/**
* nm_utils_get_monotonic_timestamp_ms:
*
* Returns: a monotonically increasing time stamp in milliseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ms (void)
{
const GlobalState *p;
struct timespec tp;
p = _t_clock_gettime (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + p->offset_sec) * ((gint64) 1000) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/1000));
}
/**
* nm_utils_get_monotonic_timestamp_s:
*
* Returns: nm_utils_get_monotonic_timestamp_ms() in seconds (throwing
* away sub second parts). The returned value will always be positive.
*
* This value wraps after roughly 68 years which should be fine for any
* practical purpose.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint32
nm_utils_get_monotonic_timestamp_s (void)
{
const GlobalState *p;
struct timespec tp;
p = _t_clock_gettime (&tp);
return (((gint64) tp.tv_sec) + p->offset_sec);
}
/**
* nm_utils_monotonic_timestamp_as_boottime:
* @timestamp: the monotonic-timestamp that should be converted into CLOCK_BOOTTIME.
* @timestamp_ns_per_tick: How many nano seconds make one unit of @timestamp? E.g. if
* @timestamp is in unit seconds, pass %NM_UTILS_NS_PER_SECOND; @timestamp in nano
* seconds, pass 1; @timestamp in milli seconds, pass %NM_UTILS_NS_PER_SECOND/1000; etc.
*
* Returns: the monotonic-timestamp as CLOCK_BOOTTIME, as returned by clock_gettime().
* The unit is the same as the passed in @timestamp basd on @timestamp_ns_per_tick.
* E.g. if you passed @timestamp in as seconds, it will return boottime in seconds.
* If @timestamp is a non-positive, it returns -1. Note that a (valid) monotonic-timestamp
* is always positive.
*
* On older kernels that don't support CLOCK_BOOTTIME, the returned time is instead CLOCK_MONOTONIC.
**/
gint64
nm_utils_monotonic_timestamp_as_boottime (gint64 timestamp, gint64 timestamp_ns_per_tick)
{
const GlobalState *p;
gint64 offset;
/* only support ns-per-tick being a multiple of 10. */
g_return_val_if_fail (timestamp_ns_per_tick == 1
|| (timestamp_ns_per_tick > 0 &&
timestamp_ns_per_tick <= NM_UTILS_NS_PER_SECOND &&
timestamp_ns_per_tick % 10 == 0),
-1);
/* Check that the timestamp is in a valid range. */
g_return_val_if_fail (timestamp >= 0, -1);
/* if the caller didn't yet ever fetch a monotonic-timestamp, he cannot pass any meaningful
* value (because he has no idea what these timestamps would be). That would be a bug. */
nm_assert (g_atomic_pointer_get (&p_global_state));
p = _t_get_global_state ();
/* calculate the offset of monotonic-timestamp to boottime. offset_s is <= 1. */
offset = p->offset_sec * (NM_UTILS_NS_PER_SECOND / timestamp_ns_per_tick);
/* check for overflow. */
g_return_val_if_fail (offset > 0 || timestamp < G_MAXINT64 + offset, G_MAXINT64);
return timestamp - offset;
}