Files
NetworkManager/src/NetworkManagerUtils.c
Dan Williams 1d8201cb9e 2005-12-03 Dan Williams <dcbw@redhat.com>
* src/NetworkManagerUtils.[ch]
	  src/nm-ip4-config.c
		- move ip4_netmask_to_prefix() to NetworkManagerUtils.c
		- consolidate code into nm_utils_ip4_addr_to_nl_addr()


git-svn-id: http://svn-archive.gnome.org/svn/NetworkManager/trunk@1116 4912f4e0-d625-0410-9fb7-b9a5a253dbdc
2005-12-04 02:23:29 +00:00

698 lines
15 KiB
C

/* NetworkManager -- Network link manager
*
* Dan Williams <dcbw@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* (C) Copyright 2004 Red Hat, Inc.
*/
#include <glib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <linux/sockios.h>
#include <syslog.h>
#include <stdarg.h>
#include <sys/time.h>
#include <string.h>
#include <signal.h>
#include <iwlib.h>
#include "NetworkManager.h"
#include "NetworkManagerUtils.h"
#include "nm-utils.h"
#include <netlink/addr.h>
#include <netinet/in.h>
struct NMSock
{
int fd;
char *func;
char *desc;
NMDevice *dev;
};
static GSList *sock_list = NULL;
static GStaticMutex sock_list_mutex = G_STATIC_MUTEX_INIT;
typedef struct MutexDesc
{
GMutex *mutex;
char *desc;
} MutexDesc;
GSList *mutex_descs = NULL;
/*#define LOCKING_DEBUG*/
static MutexDesc *nm_find_mutex_desc (GMutex *mutex)
{
GSList *elt;
for (elt = mutex_descs; elt; elt = g_slist_next (elt))
{
MutexDesc *desc = (MutexDesc *)(elt->data);
if (desc && (desc->mutex == mutex))
return desc;
}
return NULL;
}
/*
* nm_register_mutex_desc
*
* Associate a description with a particular mutex.
*
*/
void nm_register_mutex_desc (GMutex *mutex, const char *string)
{
if (!(nm_find_mutex_desc (mutex)))
{
MutexDesc *desc = g_malloc0 (sizeof (MutexDesc));
desc->mutex = mutex;
desc->desc = g_strdup (string);
mutex_descs = g_slist_append (mutex_descs, desc);
}
}
/*
* nm_try_acquire_mutex
*
* Tries to acquire a given mutex, sleeping a bit between tries.
*
* Returns: FALSE if mutex was not acquired
* TRUE if mutex was successfully acquired
*/
gboolean nm_try_acquire_mutex (GMutex *mutex, const char *func)
{
g_return_val_if_fail (mutex != NULL, FALSE);
if (g_mutex_trylock (mutex))
{
#ifdef LOCKING_DEBUG
if (func)
{
MutexDesc *desc = nm_find_mutex_desc (mutex);
nm_debug ("MUTEX: <%s %p> acquired by %s", desc ? desc->desc : "(none)", mutex, func);
}
#endif
return (TRUE);
}
#ifdef LOCKING_DEBUG
if (func)
{
MutexDesc *desc = nm_find_mutex_desc (mutex);
nm_debug ("MUTEX: <%s %p> FAILED to be acquired by %s", desc ? desc->desc : "(none)", mutex, func);
}
#endif
return (FALSE);
}
/*
* nm_lock_mutex
*
* Blocks until a mutex is grabbed, with debugging.
*
*/
void nm_lock_mutex (GMutex *mutex, const char *func)
{
#ifdef LOCKING_DEBUG
if (func)
{
MutexDesc *desc = nm_find_mutex_desc (mutex);
nm_debug ("MUTEX: <%s %p> being acquired by %s", desc ? desc->desc : "(none)", mutex, func);
}
#endif
g_mutex_lock (mutex);
}
/*
* nm_unlock_mutex
*
* Simply unlocks a mutex, balances nm_try_acquire_mutex()
*
*/
void nm_unlock_mutex (GMutex *mutex, const char *func)
{
g_return_if_fail (mutex != NULL);
#ifdef LOCKING_DEBUG
if (func)
{
MutexDesc *desc = nm_find_mutex_desc (mutex);
nm_debug ("MUTEX: <%s %p> released by %s", desc ? desc->desc : "(none)", mutex, func);
}
#endif
g_mutex_unlock (mutex);
}
/*
* nm_dev_sock_open
*
* Open a socket to a network device and store some debug info about it.
*
*/
NMSock *nm_dev_sock_open (NMDevice *dev, SockType type, const char *func_name, const char *desc)
{
NMSock *sock = NULL;
sock = g_malloc0 (sizeof (NMSock));
sock->fd = -1;
switch (type)
{
case DEV_WIRELESS:
sock->fd = iw_sockets_open ();
break;
case DEV_GENERAL:
if ((sock->fd = socket (PF_INET, SOCK_DGRAM, 0)) < 0)
if ((sock->fd = socket (PF_PACKET, SOCK_DGRAM, 0)) < 0)
sock->fd = socket (PF_INET6, SOCK_DGRAM, 0);
break;
case NETWORK_CONTROL:
sock->fd = socket (AF_PACKET, SOCK_PACKET, htons (ETH_P_ALL));
break;
default:
break;
}
if (sock->fd < 0)
{
g_free (sock);
nm_warning ("Could not open control socket for device '%s'.", dev ? nm_device_get_iface (dev) : "none");
return NULL;
}
sock->func = func_name ? g_strdup (func_name) : NULL;
sock->desc = desc ? g_strdup (desc) : NULL;
sock->dev = dev;
if (sock->dev)
nm_device_ref (sock->dev);
/* Add the sock to our global sock list for tracking */
g_static_mutex_lock (&sock_list_mutex);
sock_list = g_slist_append (sock_list, sock);
g_static_mutex_unlock (&sock_list_mutex);
return sock;
}
/*
* nm_dev_sock_close
*
* Close a socket and free its debug data.
*
*/
void nm_dev_sock_close (NMSock *sock)
{
GSList *elt;
g_return_if_fail (sock != NULL);
close (sock->fd);
g_free (sock->func);
g_free (sock->desc);
if (sock->dev)
nm_device_unref (sock->dev);
memset (sock, 0, sizeof (NMSock));
g_static_mutex_lock (&sock_list_mutex);
for (elt = sock_list; elt; elt = g_slist_next (elt))
{
NMSock *temp_sock = (NMSock *)(elt->data);
if (temp_sock == sock)
{
sock_list = g_slist_remove_link (sock_list, elt);
g_slist_free (elt);
break;
}
}
g_static_mutex_unlock (&sock_list_mutex);
g_free (sock);
}
/*
* nm_dev_sock_get_fd
*
* Return the fd associated with an NMSock
*
*/
int nm_dev_sock_get_fd (NMSock *sock)
{
g_return_val_if_fail (sock != NULL, -1);
return sock->fd;
}
/*
* nm_print_open_socks
*
* Print a list of currently open and registered NMSocks.
*
*/
void nm_print_open_socks (void)
{
GSList *elt = NULL;
int i = 0;
nm_debug ("Open Sockets List:");
g_static_mutex_lock (&sock_list_mutex);
for (elt = sock_list; elt; elt = g_slist_next (elt))
{
NMSock *sock = (NMSock *)(elt->data);
if (sock)
{
i++;
nm_debug (" %d: %s fd:%d F:'%s' D:'%s'", i, sock->dev ? nm_device_get_iface (sock->dev) : "",
sock->fd, sock->func, sock->desc);
}
}
g_static_mutex_unlock (&sock_list_mutex);
nm_debug ("Open Sockets List Done.");
}
/*
* nm_null_safe_strcmp
*
* Doesn't freaking segfault if s1/s2 are NULL
*
*/
int nm_null_safe_strcmp (const char *s1, const char *s2)
{
if (!s1 && !s2)
return 0;
if (!s1 && s2)
return -1;
if (s1 && !s2)
return 1;
return (strcmp (s1, s2));
}
/*
* nm_ethernet_address_is_valid
*
* Compares an ethernet address against known invalid addresses.
*
*/
gboolean nm_ethernet_address_is_valid (const struct ether_addr *test_addr)
{
gboolean valid = FALSE;
struct ether_addr invalid_addr1 = { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
struct ether_addr invalid_addr2 = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00} };
struct ether_addr invalid_addr3 = { {0x44, 0x44, 0x44, 0x44, 0x44, 0x44} };
struct ether_addr invalid_addr4 = { {0x00, 0x30, 0xb4, 0x00, 0x00, 0x00} }; /* prism54 dummy MAC */
g_return_val_if_fail (test_addr != NULL, FALSE);
/* Compare the AP address the card has with invalid ethernet MAC addresses. */
if ( (memcmp(test_addr, &invalid_addr1, sizeof(struct ether_addr)) != 0)
&& (memcmp(test_addr, &invalid_addr2, sizeof(struct ether_addr)) != 0)
&& (memcmp(test_addr, &invalid_addr3, sizeof(struct ether_addr)) != 0)
&& (memcmp(test_addr, &invalid_addr4, sizeof(struct ether_addr)) != 0)
&& ((test_addr->ether_addr_octet[0] & 1) == 0)) /* Multicast addresses */
valid = TRUE;
return (valid);
}
/*
* nm_spawn_process
*
* Wrap g_spawn_sync in a usable manner
*
*/
int nm_spawn_process (const char *args)
{
gint num_args;
char **argv = NULL;
int exit_status = -1;
GError *error = NULL;
char *so = NULL;
char *se = NULL;
g_return_val_if_fail (args != NULL, -1);
if (g_shell_parse_argv (args, &num_args, &argv, &error))
{
GError *error2 = NULL;
if (!g_spawn_sync ("/", argv, NULL, 0, NULL, NULL, &so, &se, &exit_status, &error2))
nm_warning ("nm_spawn_process('%s'): could not spawn process. (%s)\n", args, error2->message);
if (so) g_free(so);
if (se) g_free(se);
if (argv) g_strfreev (argv);
if (error2) g_error_free (error2);
} else nm_warning ("nm_spawn_process('%s'): could not parse arguments (%s)\n", args, error->message);
if (error) g_error_free (error);
return (exit_status);
}
/*
* nm_print_device_capabilities
*
* Return the capabilities for a particular device.
*
*/
void nm_print_device_capabilities (NMDevice *dev)
{
gboolean full_support = TRUE;
guint32 caps;
const char * driver = NULL;
g_return_if_fail (dev != NULL);
caps = nm_device_get_capabilities (dev);
driver = nm_device_get_driver (dev);
if (caps == NM_DEVICE_CAP_NONE || !(NM_DEVICE_CAP_NM_SUPPORTED))
{
nm_info ("%s: Driver support level for '%s' is unsupported",
nm_device_get_iface (dev), driver);
return;
}
if (nm_device_is_wired (dev))
{
if (!(caps & NM_DEVICE_CAP_CARRIER_DETECT))
{
nm_info ("%s: Driver '%s' does not support carrier detection.\n"
"\tYou must switch to it manually.",
nm_device_get_iface (dev), driver);
full_support = FALSE;
}
}
else if (nm_device_is_wireless (dev))
{
if (!(caps & NM_DEVICE_CAP_WIRELESS_SCAN))
{
nm_info ("%s: Driver '%s' does not support wireless scanning.\n"
"\tSome features will not be available.",
nm_device_get_iface (dev), driver);
full_support = FALSE;
}
}
if (full_support)
{
nm_info ("%s: Device is fully-supported using driver '%s'.",
nm_device_get_iface (dev), driver);
}
}
static inline int nm_timeval_cmp(const struct timeval *a,
const struct timeval *b)
{
int x;
x = a->tv_sec - b->tv_sec;
x *= G_USEC_PER_SEC;
if (x)
return x;
x = a->tv_usec - b->tv_usec;
if (x)
return x;
return 0;
}
static inline int nm_timeval_has_passed(const struct timeval *a)
{
struct timeval current;
gettimeofday(&current, NULL);
return (nm_timeval_cmp(&current, a) >= 0);
}
static inline void nm_timeval_add(struct timeval *a,
const struct timeval *b)
{
struct timeval b1;
memmove(&b1, b, sizeof b1);
/* normalize a and b to be positive for everything */
while (a->tv_usec < 0)
{
a->tv_sec--;
a->tv_usec += G_USEC_PER_SEC;
}
while (b1.tv_usec < 0)
{
b1.tv_sec--;
b1.tv_usec += G_USEC_PER_SEC;
}
/* now add secs and usecs */
a->tv_sec += b1.tv_sec;
a->tv_usec += b1.tv_usec;
/* and handle our overflow */
if (a->tv_usec > G_USEC_PER_SEC)
{
a->tv_sec++;
a->tv_usec -= G_USEC_PER_SEC;
}
}
static void nm_v_wait_for_completion_or_timeout(
const int max_tries,
const struct timeval *max_time,
const guint interval_usecs,
nm_completion_func test_func,
nm_completion_func action_func,
nm_completion_args args)
{
int try;
gboolean finished = FALSE;
struct timeval finish_time;
g_return_if_fail (test_func || action_func);
if (max_time) {
gettimeofday(&finish_time, NULL);
nm_timeval_add(&finish_time, max_time);
}
try = -1;
while (!finished &&
(max_tries == NM_COMPLETION_TRIES_INFINITY || try < max_tries))
{
if (max_time && nm_timeval_has_passed(&finish_time))
break;
try++;
if (test_func)
{
finished = (*test_func)(try, args);
if (finished)
break;
}
/* #define NM_SLEEP_DEBUG */
#ifdef NM_SLEEP_DEBUG
syslog (LOG_INFO, "sleeping for %d usecs", interval_usecs);
#endif
g_usleep(interval_usecs);
if (action_func)
finished = (*action_func)(try, args);
}
}
/* these should probably be moved to NetworkManagerUtils.h as macros
* since they don't do varargs stuff any more */
void nm_wait_for_completion_or_timeout(
const int max_tries,
const struct timeval *max_time,
const guint interval_usecs,
nm_completion_func test_func,
nm_completion_func action_func,
nm_completion_args args)
{
nm_v_wait_for_completion_or_timeout(max_tries, max_time,
interval_usecs, test_func,
action_func, args);
}
void nm_wait_for_completion(
const int max_tries,
const guint interval_usecs,
nm_completion_func test_func,
nm_completion_func action_func,
nm_completion_args args)
{
nm_v_wait_for_completion_or_timeout(max_tries, NULL,
interval_usecs, test_func,
action_func, args);
}
void nm_wait_for_timeout(
const struct timeval *max_time,
const guint interval_usecs,
nm_completion_func test_func,
nm_completion_func action_func,
nm_completion_args args)
{
nm_v_wait_for_completion_or_timeout(NM_COMPLETION_TRIES_INFINITY, max_time,
interval_usecs, test_func, action_func, args);
}
/* you can use these, but they're really just examples */
gboolean nm_completion_boolean_test(int tries, nm_completion_args args)
{
gboolean *condition = (gboolean *)args[0];
char *message = (char *)args[1];
int log_level = GPOINTER_TO_INT (args[2]);
int log_interval = GPOINTER_TO_INT (args[3]);
g_return_val_if_fail (condition != NULL, TRUE);
if (message)
if ((log_interval == 0 && tries == 0) || (log_interval != 0 && tries % log_interval == 0))
{
if (log_level == LOG_WARNING)
nm_warning_str (message);
else if (log_level == LOG_ERR)
nm_error_str (message);
else if (log_level == LOG_DEBUG)
nm_debug_str (message);
else
nm_info_str (message);
}
if (*condition)
return TRUE;
return FALSE;
}
gboolean nm_completion_boolean_function1_test(int tries,
nm_completion_args args)
{
nm_completion_boolean_function_1 condition = args[0];
char *message = args[1];
int log_level = GPOINTER_TO_INT (args[2]);
int log_interval = GPOINTER_TO_INT (args[3]);
u_int64_t arg0;
memcpy(&arg0, &args[4], sizeof (arg0));
g_return_val_if_fail (condition, TRUE);
if (message)
if ((log_interval == 0 && tries == 0)
|| (log_interval != 0 && tries % log_interval == 0))
syslog(log_level, message);
if (!(*condition)(arg0))
return TRUE;
return FALSE;
}
gboolean nm_completion_boolean_function2_test(int tries,
nm_completion_args args)
{
nm_completion_boolean_function_2 condition = args[0];
char *message = args[1];
int log_level = GPOINTER_TO_INT (args[2]);
int log_interval = GPOINTER_TO_INT (args[3]);
u_int64_t arg0, arg1;
memcpy(&arg0, &args[4], sizeof (arg0));
memcpy(&arg1, &args[4]+sizeof (arg0), sizeof (arg1));
g_return_val_if_fail (condition, TRUE);
if (message)
if ((log_interval == 0 && tries == 0)
|| (log_interval != 0 && tries % log_interval == 0))
syslog(log_level, message);
if (!(*condition)(arg0, arg1))
return TRUE;
return FALSE;
}
gchar *nm_utils_inet_ip4_address_as_string (guint32 ip)
{
struct in_addr tmp_addr;
gchar *ip_string;
tmp_addr.s_addr = ip;
ip_string = inet_ntoa (tmp_addr);
return g_strdup (ip_string);
}
struct nl_addr * nm_utils_ip4_addr_to_nl_addr (guint32 ip4_addr)
{
struct nl_addr * nla = NULL;
if (!(nla = nl_addr_alloc (sizeof (in_addr_t))))
return NULL;
nl_addr_set_family (nla, AF_INET);
nl_addr_set_binary_addr (nla, &ip4_addr, sizeof (guint32));
return nla;
}
/*
* nm_utils_ip4_netmask_to_prefix
*
* Figure out the network prefix from a netmask. Netmask
* MUST be in network byte order.
*
*/
int nm_utils_ip4_netmask_to_prefix (guint32 ip4_netmask)
{
int i = 1;
/* Just count how many bit shifts we need */
ip4_netmask = ntohl (ip4_netmask);
while (!(ip4_netmask & 0x1) && ++i)
ip4_netmask = ip4_netmask >> 1;
return (32 - (i-1));
}