Files
NetworkManager/src/nm-core-utils.c
Thomas Haller 93ea7a5905 shared: move nm_utils_fd_*() from src/ to shared/nm-utils/
The functions are general purpose and independent from NetworkManager core.
Move them to "shared/nm-utils/" so they can be used independently.
2017-10-13 12:47:55 +02:00

4339 lines
128 KiB
C

/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/* NetworkManager -- Network link manager
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Copyright 2004 - 2014 Red Hat, Inc.
* Copyright 2005 - 2008 Novell, Inc.
*/
#include "nm-default.h"
#include "nm-core-utils.h"
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <resolv.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <linux/if.h>
#include <linux/if_infiniband.h>
#include <net/ethernet.h>
#include "nm-utils.h"
#include "nm-core-internal.h"
#include "nm-setting-connection.h"
#include "nm-setting-ip4-config.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"
/*
* Some toolchains (E.G. uClibc 0.9.33 and earlier) don't export
* CLOCK_BOOTTIME even though the kernel supports it, so provide a
* local definition
*/
#ifndef CLOCK_BOOTTIME
#define CLOCK_BOOTTIME 7
#endif
G_STATIC_ASSERT (sizeof (NMUtilsTestFlags) <= sizeof (int));
static int _nm_utils_testing = 0;
gboolean
nm_utils_get_testing_initialized ()
{
NMUtilsTestFlags flags;
flags = (NMUtilsTestFlags) _nm_utils_testing;
if (flags == NM_UTILS_TEST_NONE)
flags = (NMUtilsTestFlags) g_atomic_int_get (&_nm_utils_testing);
return flags != NM_UTILS_TEST_NONE;
}
NMUtilsTestFlags
nm_utils_get_testing ()
{
NMUtilsTestFlags flags;
flags = (NMUtilsTestFlags) _nm_utils_testing;
if (flags != NM_UTILS_TEST_NONE) {
/* Flags already initialized. Return them. */
return flags & NM_UTILS_TEST_ALL;
}
/* Accessing nm_utils_get_testing() causes us to set the flags to initialized.
* Detecting running tests also based on g_test_initialized(). */
flags = _NM_UTILS_TEST_INITIALIZED;
if (g_test_initialized ())
flags |= _NM_UTILS_TEST_GENERAL;
if (g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) {
/* Done. We set it. */
return flags & NM_UTILS_TEST_ALL;
}
/* It changed in the meantime (??). Re-read the value. */
return ((NMUtilsTestFlags) _nm_utils_testing) & NM_UTILS_TEST_ALL;
}
void
_nm_utils_set_testing (NMUtilsTestFlags flags)
{
g_assert (!NM_FLAGS_ANY (flags, ~NM_UTILS_TEST_ALL));
/* mask out everything except ALL, and always set GENERAL. */
flags = (flags & NM_UTILS_TEST_ALL) | (_NM_UTILS_TEST_GENERAL | _NM_UTILS_TEST_INITIALIZED);
if (!g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) {
/* We only allow setting _nm_utils_set_testing() once, before fetching the
* value with nm_utils_get_testing(). */
g_return_if_reached ();
}
}
/*****************************************************************************/
static GSList *_singletons = NULL;
static gboolean _singletons_shutdown = FALSE;
static void
_nm_singleton_instance_weak_cb (gpointer data,
GObject *where_the_object_was)
{
_singletons = g_slist_remove (_singletons, where_the_object_was);
}
static void __attribute__((destructor))
_nm_singleton_instance_destroy (void)
{
_singletons_shutdown = TRUE;
while (_singletons) {
GObject *instance = _singletons->data;
_singletons = g_slist_delete_link (_singletons, _singletons);
g_object_weak_unref (instance, _nm_singleton_instance_weak_cb, NULL);
if (instance->ref_count > 1)
nm_log_dbg (LOGD_CORE, "disown %s singleton (%p)", G_OBJECT_TYPE_NAME (instance), instance);
g_object_unref (instance);
}
}
void
_nm_singleton_instance_register_destruction (GObject *instance)
{
g_return_if_fail (G_IS_OBJECT (instance));
/* Don't allow registration after shutdown. We only destroy the singletons
* once. */
g_return_if_fail (!_singletons_shutdown);
g_object_weak_ref (instance, _nm_singleton_instance_weak_cb, NULL);
_singletons = g_slist_prepend (_singletons, instance);
}
/*****************************************************************************/
static double
_exp10 (guint16 ex)
{
double v;
if (ex == 0)
return 1.0;
v = _exp10 (ex / 2);
v = v * v;
if (ex % 2)
v *= 10;
return v;
}
/*
* nm_utils_exp10:
* @ex: the exponent
*
* Returns: 10^ex, or pow(10, ex), or exp10(ex).
*/
double
nm_utils_exp10 (gint16 ex)
{
if (ex >= 0)
return _exp10 (ex);
return 1.0 / _exp10 (- ((gint32) ex));
}
/*****************************************************************************/
guint
nm_utils_in6_addr_hash (const struct in6_addr *addr)
{
guint hash = (guint) 0x897da53981a13ULL;
int i;
for (i = 0; i < sizeof (*addr); i++)
hash = NM_HASH_COMBINE (hash, ((const guint8 *) addr)[i]);
return hash;
}
/*****************************************************************************/
/*
* nm_ethernet_address_is_valid:
* @addr: pointer to a binary or ASCII Ethernet address
* @len: length of @addr, or -1 if @addr is ASCII
*
* Compares an Ethernet address against known invalid addresses.
* Returns: %TRUE if @addr is a valid Ethernet address, %FALSE if it is not.
*/
gboolean
nm_ethernet_address_is_valid (gconstpointer addr, gssize len)
{
guint8 invalid_addr[4][ETH_ALEN] = {
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x44, 0x44, 0x44, 0x44, 0x44, 0x44},
{0x00, 0x30, 0xb4, 0x00, 0x00, 0x00}, /* prism54 dummy MAC */
};
guint8 addr_bin[ETH_ALEN];
guint i;
if (!addr) {
g_return_val_if_fail (len == -1 || len == ETH_ALEN, FALSE);
return FALSE;
}
if (len == -1) {
if (!nm_utils_hwaddr_aton (addr, addr_bin, ETH_ALEN))
return FALSE;
addr = addr_bin;
} else if (len != ETH_ALEN)
g_return_val_if_reached (FALSE);
/* Check for multicast address */
if ((((guint8 *) addr)[0]) & 0x01)
return FALSE;
for (i = 0; i < G_N_ELEMENTS (invalid_addr); i++) {
if (nm_utils_hwaddr_matches (addr, ETH_ALEN, invalid_addr[i], ETH_ALEN))
return FALSE;
}
return TRUE;
}
gconstpointer
nm_utils_ipx_address_clear_host_address (int family, gpointer dst, gconstpointer src, guint8 plen)
{
g_return_val_if_fail (src, NULL);
g_return_val_if_fail (dst, NULL);
switch (family) {
case AF_INET:
g_return_val_if_fail (plen <= 32, NULL);
*((guint32 *) dst) = nm_utils_ip4_address_clear_host_address (*((guint32 *) src), plen);
break;
case AF_INET6:
g_return_val_if_fail (plen <= 128, NULL);
nm_utils_ip6_address_clear_host_address (dst, src, plen);
break;
default:
g_return_val_if_reached (NULL);
}
return dst;
}
/* nm_utils_ip4_address_clear_host_address:
* @addr: source ip6 address
* @plen: prefix length of network
*
* returns: the input address, with the host address set to 0.
*/
in_addr_t
nm_utils_ip4_address_clear_host_address (in_addr_t addr, guint8 plen)
{
return addr & _nm_utils_ip4_prefix_to_netmask (plen);
}
/* nm_utils_ip6_address_clear_host_address:
* @dst: destination output buffer, will contain the network part of the @src address
* @src: source ip6 address
* @plen: prefix length of network
*
* Note: this function is self assignment safe, to update @src inplace, set both
* @dst and @src to the same destination or set @src NULL.
*/
const struct in6_addr *
nm_utils_ip6_address_clear_host_address (struct in6_addr *dst, const struct in6_addr *src, guint8 plen)
{
g_return_val_if_fail (plen <= 128, NULL);
g_return_val_if_fail (dst, NULL);
if (!src)
src = dst;
if (plen < 128) {
guint nbytes = plen / 8;
guint nbits = plen % 8;
if (nbytes && dst != src)
memcpy (dst, src, nbytes);
if (nbits) {
dst->s6_addr[nbytes] = (src->s6_addr[nbytes] & (0xFF << (8 - nbits)));
nbytes++;
}
if (nbytes <= 15)
memset (&dst->s6_addr[nbytes], 0, 16 - nbytes);
} else if (src != dst)
*dst = *src;
return dst;
}
int
nm_utils_ip6_address_same_prefix_cmp (const struct in6_addr *addr_a, const struct in6_addr *addr_b, guint8 plen)
{
int nbytes;
guint8 va, vb, m;
if (plen >= 128)
NM_CMP_DIRECT_MEMCMP (addr_a, addr_b, sizeof (struct in6_addr));
else {
nbytes = plen / 8;
if (nbytes)
NM_CMP_DIRECT_MEMCMP (addr_a, addr_b, nbytes);
plen = plen % 8;
if (plen != 0) {
m = ~((1 << (8 - plen)) - 1);
va = ((((const guint8 *) addr_a))[nbytes]) & m;
vb = ((((const guint8 *) addr_b))[nbytes]) & m;
NM_CMP_DIRECT (va, vb);
}
}
return 0;
}
/*****************************************************************************/
void
nm_utils_array_remove_at_indexes (GArray *array, const guint *indexes_to_delete, gsize len)
{
gsize elt_size;
guint index_to_delete;
guint i_src;
guint mm_src, mm_dst, mm_len;
gsize i_itd;
guint res_length;
g_return_if_fail (array);
if (!len)
return;
g_return_if_fail (indexes_to_delete);
elt_size = g_array_get_element_size (array);
i_itd = 0;
index_to_delete = indexes_to_delete[0];
if (index_to_delete >= array->len)
g_return_if_reached ();
res_length = array->len - 1;
mm_dst = index_to_delete;
mm_src = index_to_delete;
mm_len = 0;
for (i_src = index_to_delete; i_src < array->len; i_src++) {
if (i_src < index_to_delete)
mm_len++;
else {
/* we require indexes_to_delete to contain non-repeated, ascending
* indexes. Otherwise we would need to presort the indexes. */
while (TRUE) {
guint dd;
if (i_itd + 1 >= len) {
index_to_delete = G_MAXUINT;
break;
}
dd = indexes_to_delete[++i_itd];
if (dd > index_to_delete) {
if (dd >= array->len)
g_warn_if_reached ();
else {
g_assert (res_length > 0);
res_length--;
}
index_to_delete = dd;
break;
}
g_warn_if_reached ();
}
if (mm_len) {
memmove (&array->data[mm_dst * elt_size],
&array->data[mm_src * elt_size],
mm_len * elt_size);
mm_dst += mm_len;
mm_src += mm_len + 1;
mm_len = 0;
} else
mm_src++;
}
}
if (mm_len) {
memmove (&array->data[mm_dst * elt_size],
&array->data[mm_src * elt_size],
mm_len * elt_size);
}
g_array_set_size (array, res_length);
}
static const char *
_trunk_first_line (char *str)
{
char *s;
s = strchr (str, '\n');
if (s)
s[0] = '\0';
return str;
}
int
nm_utils_modprobe (GError **error, gboolean suppress_error_logging, const char *arg1, ...)
{
gs_unref_ptrarray GPtrArray *argv = NULL;
int exit_status;
gs_free char *_log_str = NULL;
#define ARGV_TO_STR(argv) (_log_str ? _log_str : (_log_str = g_strjoinv (" ", (char **) argv->pdata)))
GError *local = NULL;
va_list ap;
NMLogLevel llevel = suppress_error_logging ? LOGL_DEBUG : LOGL_ERR;
gs_free char *std_out = NULL, *std_err = NULL;
g_return_val_if_fail (!error || !*error, -1);
g_return_val_if_fail (arg1, -1);
/* construct the argument list */
argv = g_ptr_array_sized_new (4);
g_ptr_array_add (argv, "/sbin/modprobe");
g_ptr_array_add (argv, (char *) arg1);
va_start (ap, arg1);
while ((arg1 = va_arg (ap, const char *)))
g_ptr_array_add (argv, (char *) arg1);
va_end (ap);
g_ptr_array_add (argv, NULL);
nm_log_dbg (LOGD_CORE, "modprobe: '%s'", ARGV_TO_STR (argv));
if (!g_spawn_sync (NULL, (char **) argv->pdata, NULL, 0, NULL, NULL, &std_out, &std_err, &exit_status, &local)) {
nm_log (llevel, LOGD_CORE, NULL, NULL, "modprobe: '%s' failed: %s", ARGV_TO_STR (argv), local->message);
g_propagate_error (error, local);
return -1;
} else if (exit_status != 0) {
nm_log (llevel, LOGD_CORE, NULL, NULL, "modprobe: '%s' exited with error %d%s%s%s%s%s%s", ARGV_TO_STR (argv), exit_status,
std_out&&*std_out ? " (" : "", std_out&&*std_out ? _trunk_first_line (std_out) : "", std_out&&*std_out ? ")" : "",
std_err&&*std_err ? " (" : "", std_err&&*std_err ? _trunk_first_line (std_err) : "", std_err&&*std_err ? ")" : "");
}
return exit_status;
}
/**
* nm_utils_get_start_time_for_pid:
* @pid: the process identifier
* @out_state: return the state character, like R, S, Z. See `man 5 proc`.
* @out_ppid: parent process id
*
* Originally copied from polkit source (src/polkit/polkitunixprocess.c)
* and adjusted.
*
* Returns: the timestamp when the process started (by parsing /proc/$PID/stat).
* If an error occurs (e.g. the process does not exist), 0 is returned.
*
* The returned start time counts since boot, in the unit HZ (with HZ usually being (1/100) seconds)
**/
guint64
nm_utils_get_start_time_for_pid (pid_t pid, char *out_state, pid_t *out_ppid)
{
guint64 start_time;
char filename[256];
gs_free gchar *contents = NULL;
size_t length;
gs_strfreev gchar **tokens = NULL;
guint num_tokens;
gchar *p;
char state = ' ';
gint64 ppid = 0;
start_time = 0;
contents = NULL;
g_return_val_if_fail (pid > 0, 0);
nm_sprintf_buf (filename, "/proc/%"G_GUINT64_FORMAT"/stat", (guint64) pid);
if (!g_file_get_contents (filename, &contents, &length, NULL))
goto fail;
/* start time is the token at index 19 after the '(process name)' entry - since only this
* field can contain the ')' character, search backwards for this to avoid malicious
* processes trying to fool us
*/
p = strrchr (contents, ')');
if (p == NULL)
goto fail;
p += 2; /* skip ') ' */
if (p - contents >= (int) length)
goto fail;
state = p[0];
tokens = g_strsplit (p, " ", 0);
num_tokens = g_strv_length (tokens);
if (num_tokens < 20)
goto fail;
if (out_ppid) {
ppid = _nm_utils_ascii_str_to_int64 (tokens[1], 10, 1, G_MAXINT, 0);
if (ppid == 0)
goto fail;
}
start_time = _nm_utils_ascii_str_to_int64 (tokens[19], 10, 1, G_MAXINT64, 0);
if (start_time == 0)
goto fail;
NM_SET_OUT (out_state, state);
NM_SET_OUT (out_ppid, ppid);
return start_time;
fail:
NM_SET_OUT (out_state, ' ');
NM_SET_OUT (out_ppid, 0);
return 0;
}
/*****************************************************************************/
typedef struct {
pid_t pid;
NMLogDomain log_domain;
union {
struct {
gint64 wait_start_us;
guint source_timeout_kill_id;
} async;
struct {
gboolean success;
int child_status;
} sync;
};
NMUtilsKillChildAsyncCb callback;
void *user_data;
char log_name[1]; /* variable-length object, must be last element!! */
} KillChildAsyncData;
#define LOG_NAME_FMT "kill child process '%s' (%ld)"
#define LOG_NAME_PROCESS_FMT "kill process '%s' (%ld)"
#define LOG_NAME_ARGS log_name,(long)pid
static KillChildAsyncData *
_kc_async_data_alloc (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data)
{
KillChildAsyncData *data;
size_t log_name_len;
/* append the name at the end of our KillChildAsyncData. */
log_name_len = strlen (LOG_NAME_FMT) + 20 + strlen (log_name);
data = g_malloc (sizeof (KillChildAsyncData) - 1 + log_name_len);
g_snprintf (data->log_name, log_name_len, LOG_NAME_FMT, LOG_NAME_ARGS);
data->pid = pid;
data->user_data = user_data;
data->callback = callback;
data->log_domain = log_domain;
return data;
}
#define KC_EXIT_TO_STRING_BUF_SIZE 128
static const char *
_kc_exit_to_string (char *buf, int exit)
#define _kc_exit_to_string(buf, exit) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_EXIT_TO_STRING_BUF_SIZE && sizeof ((buf)[0]) == 1), _kc_exit_to_string (buf, exit) )
{
if (WIFEXITED (exit))
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "normally with status %d", WEXITSTATUS (exit));
else if (WIFSIGNALED (exit))
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "by signal %d", WTERMSIG (exit));
else
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "with unexpected status %d", exit);
return buf;
}
static const char *
_kc_signal_to_string (int sig)
{
switch (sig) {
case 0: return "no signal (0)";
case SIGKILL: return "SIGKILL (" G_STRINGIFY (SIGKILL) ")";
case SIGTERM: return "SIGTERM (" G_STRINGIFY (SIGTERM) ")";
default:
return "Unexpected signal";
}
}
#define KC_WAITED_TO_STRING 100
static const char *
_kc_waited_to_string (char *buf, gint64 wait_start_us)
#define _kc_waited_to_string(buf, wait_start_us) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_WAITED_TO_STRING && sizeof ((buf)[0]) == 1), _kc_waited_to_string (buf, wait_start_us) )
{
g_snprintf (buf, KC_WAITED_TO_STRING, " (%ld usec elapsed)", (long) (nm_utils_get_monotonic_timestamp_us () - wait_start_us));
return buf;
}
static void
_kc_cb_watch_child (GPid pid, gint status, gpointer user_data)
{
KillChildAsyncData *data = user_data;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE], buf_wait[KC_WAITED_TO_STRING];
if (data->async.source_timeout_kill_id)
g_source_remove (data->async.source_timeout_kill_id);
nm_log_dbg (data->log_domain, "%s: terminated %s%s",
data->log_name, _kc_exit_to_string (buf_exit, status),
_kc_waited_to_string (buf_wait, data->async.wait_start_us));
if (data->callback)
data->callback (pid, TRUE, status, data->user_data);
g_free (data);
}
static gboolean
_kc_cb_timeout_grace_period (void *user_data)
{
KillChildAsyncData *data = user_data;
int ret, errsv;
data->async.source_timeout_kill_id = 0;
if ((ret = kill (data->pid, SIGKILL)) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | data->log_domain, "%s: kill(SIGKILL) returned unexpected return value %d: (%s, %d)",
data->log_name, ret, strerror (errsv), errsv);
}
} else {
nm_log_dbg (data->log_domain, "%s: process not terminated after %ld usec. Sending SIGKILL signal",
data->log_name, (long) (nm_utils_get_monotonic_timestamp_us () - data->async.wait_start_us));
}
return G_SOURCE_REMOVE;
}
static gboolean
_kc_invoke_callback_idle (gpointer user_data)
{
KillChildAsyncData *data = user_data;
if (data->sync.success) {
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
nm_log_dbg (data->log_domain, "%s: invoke callback: terminated %s",
data->log_name, _kc_exit_to_string (buf_exit, data->sync.child_status));
} else
nm_log_dbg (data->log_domain, "%s: invoke callback: killing child failed", data->log_name);
data->callback (data->pid, data->sync.success, data->sync.child_status, data->user_data);
g_free (data);
return G_SOURCE_REMOVE;
}
static void
_kc_invoke_callback (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data, gboolean success, int child_status)
{
KillChildAsyncData *data;
if (!callback)
return;
data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
data->sync.success = success;
data->sync.child_status = child_status;
g_idle_add (_kc_invoke_callback_idle, data);
}
/* nm_utils_kill_child_async:
* @pid: the process id of the process to kill
* @sig: signal to send initially. Set to 0 to send not signal.
* @log_domain: the logging domain used for logging (LOGD_NONE to suppress logging)
* @log_name: for logging, the name of the processes to kill
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter is ignored.
* @callback: (allow-none): callback after the child terminated. This function will always
* be invoked asynchronously.
* @user_data: passed on to callback
*
* Uses g_child_watch_add(), so note the glib comment: if you obtain pid from g_spawn_async() or
* g_spawn_async_with_pipes() you will need to pass %G_SPAWN_DO_NOT_REAP_CHILD as flag to the spawn
* function for the child watching to work.
* Also note, that you must g_source_remove() any other child watchers for @pid because glib
* supports only one watcher per child.
**/
void
nm_utils_kill_child_async (pid_t pid, int sig, NMLogDomain log_domain,
const char *log_name, guint32 wait_before_kill_msec,
NMUtilsKillChildAsyncCb callback, void *user_data)
{
int status = 0, errsv;
pid_t ret;
KillChildAsyncData *data;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
g_return_if_fail (pid > 0);
g_return_if_fail (log_name != NULL);
/* let's see if the child already terminated... */
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
return;
} else if (ret != 0) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
LOG_NAME_ARGS, strerror (errsv), errsv);
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
return;
}
}
/* send the first signal. */
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error sending %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
return;
}
/* let's try again with waitpid, probably there was a race... */
ret = waitpid (pid, &status, 0);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
} else {
errsv = errno;
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
}
return;
}
data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
data->async.wait_start_us = nm_utils_get_monotonic_timestamp_us ();
if (sig != SIGKILL && wait_before_kill_msec > 0) {
data->async.source_timeout_kill_id = g_timeout_add (wait_before_kill_msec, _kc_cb_timeout_grace_period, data);
nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s (send SIGKILL in %ld milliseconds)...",
data->log_name, _kc_signal_to_string (sig), (long) wait_before_kill_msec);
} else {
data->async.source_timeout_kill_id = 0;
nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s...",
data->log_name, _kc_signal_to_string (sig));
}
g_child_watch_add (pid, _kc_cb_watch_child, data);
}
static inline gulong
_sleep_duration_convert_ms_to_us (guint32 sleep_duration_msec)
{
if (sleep_duration_msec > 0) {
guint64 x = (gint64) sleep_duration_msec * (guint64) 1000L;
return x < G_MAXULONG ? (gulong) x : G_MAXULONG;
}
return G_USEC_PER_SEC / 20;
}
/* nm_utils_kill_child_sync:
* @pid: process id to kill
* @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
* second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
* @log_domain: log debug information for this domain. Errors and warnings are logged both
* as %LOGD_CORE and @log_domain.
* @log_name: name of the process to kill for logging.
* @child_status: (out) (allow-none): return the exit status of the child, if no error occured.
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has not effect.
* @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
* Set to zero, to use the default (meaning 20 wakeups per seconds).
*
* Kill a child process synchronously and wait. The function first checks if the child already terminated
* and if it did, return the exit status. Otherwise send one @sig signal. @sig will always be
* sent unless the child already exited. If the child does not exit within @wait_before_kill_msec milliseconds,
* the function will send %SIGKILL and waits for the child indefinitly. If @wait_before_kill_msec is zero, no
* %SIGKILL signal will be sent.
*
* In case of error, errno is preserved to contain the last reason of failure.
**/
gboolean
nm_utils_kill_child_sync (pid_t pid, int sig, NMLogDomain log_domain, const char *log_name,
int *child_status, guint32 wait_before_kill_msec,
guint32 sleep_duration_msec)
{
int status = 0, errsv = 0;
pid_t ret;
gboolean success = FALSE;
gboolean was_waiting = FALSE, send_kill = FALSE;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
char buf_wait[KC_WAITED_TO_STRING];
gint64 wait_start_us;
g_return_val_if_fail (pid > 0, FALSE);
g_return_val_if_fail (log_name != NULL, FALSE);
/* check if the child process already terminated... */
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
success = TRUE;
goto out;
} else if (ret != 0) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
LOG_NAME_ARGS, strerror (errsv), errsv);
goto out;
}
}
/* send first signal @sig */
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
} else {
/* let's try again with waitpid, probably there was a race... */
ret = waitpid (pid, &status, 0);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
success = TRUE;
} else {
errsv = errno;
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
}
}
goto out;
}
wait_start_us = nm_utils_get_monotonic_timestamp_us ();
/* wait for the process to terminated... */
if (sig != SIGKILL) {
gint64 wait_until, now;
gulong sleep_time, sleep_duration_usec;
int loop_count = 0;
sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec);
wait_until = wait_before_kill_msec <= 0 ? 0 : wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
while (TRUE) {
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s, process %ld exited %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), (long) ret, _kc_exit_to_string (buf_exit, status),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
success = TRUE;
goto out;
}
if (ret == -1) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s, waitpid failed with %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
goto out;
}
}
if (!wait_until)
break;
now = nm_utils_get_monotonic_timestamp_us ();
if (now >= wait_until)
break;
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting up to %ld milliseconds for process to terminate normally after sending %s...",
LOG_NAME_ARGS, (long) MAX (wait_before_kill_msec, 0), _kc_signal_to_string (sig));
was_waiting = TRUE;
}
sleep_time = MIN (wait_until - now, sleep_duration_usec);
if (loop_count < 20) {
/* At the beginning we expect the process to die fast.
* Limit the sleep time, the limit doubles with every iteration. */
sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
loop_count++;
}
g_usleep (sleep_time);
}
/* send SIGKILL, if called with @wait_before_kill_msec > 0 */
if (wait_until) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": sending SIGKILL...", LOG_NAME_ARGS);
send_kill = TRUE;
if (kill (pid, SIGKILL) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send SIGKILL (after sending %s), %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
goto out;
}
}
}
}
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting for process to terminate after sending %s%s...",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "");
}
/* block until the child terminates. */
while ((ret = waitpid (pid, &status, 0)) <= 0) {
errsv = errno;
if (errsv != EINTR) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s%s, waitpid failed with %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", strerror (errsv), errsv,
_kc_waited_to_string (buf_wait, wait_start_us));
goto out;
}
}
nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s%s, process %ld exited %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", (long) ret,
_kc_exit_to_string (buf_exit, status), _kc_waited_to_string (buf_wait, wait_start_us));
success = TRUE;
out:
if (child_status)
*child_status = success ? status : -1;
errno = success ? 0 : errsv;
return success;
}
/* nm_utils_kill_process_sync:
* @pid: process id to kill
* @start_time: the start time of the process to kill (as obtained by nm_utils_get_start_time_for_pid()).
* This is an optional argument, to avoid (somewhat) killing the wrong process as @pid
* might get recycled. You can pass 0, to not provide this parameter.
* @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
* second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
* @log_domain: log debug information for this domain. Errors and warnings are logged both
* as %LOGD_CORE and @log_domain.
* @log_name: name of the process to kill for logging.
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has no effect.
* If @max_wait_msec is set but less then @wait_before_kill_msec, the final %SIGKILL will also
* not be send.
* @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
* Set to zero, to use the default (meaning 20 wakeups per seconds).
* @max_wait_msec: if 0, waits indefinitely until the process is gone (or a zombie). Otherwise, this
* is the maxium wait time until returning. If @max_wait_msec is non-zero but smaller then @wait_before_kill_msec,
* we will not send a final %SIGKILL.
*
* Kill a non-child process synchronously and wait. This function will not return before the
* process with PID @pid is gone, the process is a zombie, or @max_wait_msec expires.
**/
void
nm_utils_kill_process_sync (pid_t pid, guint64 start_time, int sig, NMLogDomain log_domain,
const char *log_name, guint32 wait_before_kill_msec,
guint32 sleep_duration_msec, guint32 max_wait_msec)
{
int errsv;
guint64 start_time0;
gint64 wait_until_sigkill, now, wait_start_us, max_wait_until;
gulong sleep_time, sleep_duration_usec;
int loop_count = 0;
gboolean was_waiting = FALSE;
char buf_wait[KC_WAITED_TO_STRING];
char p_state;
g_return_if_fail (pid > 0);
g_return_if_fail (log_name != NULL);
start_time0 = nm_utils_get_start_time_for_pid (pid, &p_state, NULL);
if (start_time0 == 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it seems already gone",
LOG_NAME_ARGS, (long int) pid);
return;
}
if (start_time != 0 && start_time != start_time0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": don't kill process %ld because the start_time is unexpectedly %lu instead of %ld",
LOG_NAME_ARGS, (long int) pid, (unsigned long) start_time0, (unsigned long) start_time);
return;
}
switch (p_state) {
case 'Z':
case 'x':
case 'X':
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it is already a zombie (%c)",
LOG_NAME_ARGS, (long int) pid, p_state);
return;
default:
break;
}
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv == ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s because process seems gone",
LOG_NAME_ARGS, _kc_signal_to_string (sig));
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
}
return;
}
/* wait for the process to terminate... */
wait_start_us = nm_utils_get_monotonic_timestamp_us ();
sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec);
if (sig != SIGKILL && wait_before_kill_msec)
wait_until_sigkill = wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
else
wait_until_sigkill = 0;
if (max_wait_msec > 0) {
max_wait_until = wait_start_us + (((gint64) max_wait_msec) * 1000L);
if (wait_until_sigkill > 0 && wait_until_sigkill > max_wait_msec)
wait_until_sigkill = 0;
} else
max_wait_until = 0;
while (TRUE) {
start_time = nm_utils_get_start_time_for_pid (pid, &p_state, NULL);
if (start_time != start_time0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone after sending signal %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
}
switch (p_state) {
case 'Z':
case 'x':
case 'X':
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is a zombie (%c) after sending signal %s%s",
LOG_NAME_ARGS, p_state, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
default:
break;
}
if (kill (pid, 0) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv == ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie after sending signal %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to kill(%ld, 0): %s (%d)%s",
LOG_NAME_ARGS, (long int) pid, strerror (errsv), errsv,
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
}
return;
}
sleep_time = sleep_duration_usec;
now = nm_utils_get_monotonic_timestamp_us ();
if ( max_wait_until != 0
&& now >= max_wait_until) {
if (wait_until_sigkill != 0) {
/* wait_before_kill_msec is not larger then max_wait_until but we did not yet send
* SIGKILL. Although we already reached our timeout, we don't want to skip sending
* the signal. Even if we don't wait for the process to disappear. */
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
kill (pid, SIGKILL);
}
nm_log_warn (log_domain, LOG_NAME_PROCESS_FMT ": timeout %u msec waiting for process to disappear (after sending %s)%s",
LOG_NAME_ARGS, (unsigned) max_wait_until, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
}
if (wait_until_sigkill != 0) {
if (now >= wait_until_sigkill) {
/* Still not dead. SIGKILL now... */
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
if (kill (pid, SIGKILL) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie%s",
LOG_NAME_ARGS, _kc_waited_to_string (buf_wait, wait_start_us));
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send SIGKILL (after sending %s), %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
_kc_waited_to_string (buf_wait, wait_start_us));
}
return;
}
sig = SIGKILL;
wait_until_sigkill = 0;
loop_count = 0; /* reset the loop_count. Now we really expect the process to die quickly. */
} else
sleep_time = MIN (wait_until_sigkill - now, sleep_duration_usec);
}
if (!was_waiting) {
if (wait_until_sigkill != 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear before sending KILL signal after sending %s...",
LOG_NAME_ARGS, (long) wait_before_kill_msec, _kc_signal_to_string (sig));
} else if (max_wait_until != 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear after sending %s...",
LOG_NAME_ARGS, (long) max_wait_msec, _kc_signal_to_string (sig));
} else {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting for process to disappear after sending %s...",
LOG_NAME_ARGS, _kc_signal_to_string (sig));
}
was_waiting = TRUE;
}
if (loop_count < 20) {
/* At the beginning we expect the process to die fast.
* Limit the sleep time, the limit doubles with every iteration. */
sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
loop_count++;
}
g_usleep (sleep_time);
}
}
#undef LOG_NAME_FMT
#undef LOG_NAME_PROCESS_FMT
#undef LOG_NAME_ARGS
const char *const NM_PATHS_DEFAULT[] = {
PREFIX "/sbin/",
PREFIX "/bin/",
"/usr/local/sbin/",
"/sbin/",
"/usr/sbin/",
"/usr/local/bin/",
"/bin/",
"/usr/bin/",
NULL,
};
const char *
nm_utils_find_helper(const char *progname, const char *try_first, GError **error)
{
return nm_utils_file_search_in_paths (progname, try_first, NM_PATHS_DEFAULT, G_FILE_TEST_IS_EXECUTABLE, NULL, NULL, error);
}
/*****************************************************************************/
/**
* nm_utils_read_link_absolute:
* @link_file: file name of the symbolic link
* @error: error reason in case of failure
*
* Uses to g_file_read_link()/readlink() to read the symlink
* and returns the result as absolute path.
**/
char *
nm_utils_read_link_absolute (const char *link_file, GError **error)
{
char *ln, *dirname, *ln_abs;
ln = g_file_read_link (link_file, error);
if (!ln)
return NULL;
if (g_path_is_absolute (ln))
return ln;
dirname = g_path_get_dirname (link_file);
if (!g_path_is_absolute (link_file)) {
gs_free char *dirname_rel = dirname;
gs_free char *current_dir = g_get_current_dir ();
dirname = g_build_filename (current_dir, dirname_rel, NULL);
}
ln_abs = g_build_filename (dirname, ln, NULL);
g_free (dirname);
g_free (ln);
return ln_abs;
}
/*****************************************************************************/
#define MAC_TAG "mac:"
#define INTERFACE_NAME_TAG "interface-name:"
#define DEVICE_TYPE_TAG "type:"
#define DRIVER_TAG "driver:"
#define SUBCHAN_TAG "s390-subchannels:"
#define EXCEPT_TAG "except:"
#define MATCH_TAG_CONFIG_NM_VERSION "nm-version:"
#define MATCH_TAG_CONFIG_NM_VERSION_MIN "nm-version-min:"
#define MATCH_TAG_CONFIG_NM_VERSION_MAX "nm-version-max:"
#define MATCH_TAG_CONFIG_ENV "env:"
typedef struct {
const char *interface_name;
const char *device_type;
const char *driver;
const char *driver_version;
struct {
const char *value;
gboolean is_parsed;
guint len;
guint8 bin[NM_UTILS_HWADDR_LEN_MAX];
} hwaddr;
struct {
const char *value;
gboolean is_parsed;
guint32 a;
guint32 b;
guint32 c;
} s390_subchannels;
} MatchDeviceData;
static gboolean
match_device_s390_subchannels_parse (const char *s390_subchannels, guint32 *out_a, guint32 *out_b, guint32 *out_c)
{
const int BUFSIZE = 30;
char buf[BUFSIZE + 1];
guint i = 0;
char *pa = NULL, *pb = NULL, *pc = NULL;
gint64 a, b, c;
nm_assert (s390_subchannels);
nm_assert (out_a);
nm_assert (out_b);
nm_assert (out_c);
if (!g_ascii_isxdigit (s390_subchannels[0]))
return FALSE;
/* Get the first channel */
for (i = 0; s390_subchannels[i]; i++) {
char ch = s390_subchannels[i];
if (!g_ascii_isxdigit (ch) && ch != '.') {
if (ch == ',') {
/* FIXME: currently we consider the first channel and ignore
* everything after the first ',' separator. Maybe we should
* validate all present channels? */
break;
}
return FALSE; /* Invalid chars */
}
if (i >= BUFSIZE)
return FALSE; /* Too long to be a subchannel */
buf[i] = ch;
}
buf[i] = '\0';
/* and grab each of its elements, there should be 3 */
pa = &buf[0];
pb = strchr (pa, '.');
if (pb)
pc = strchr (pb + 1, '.');
if (!pb || !pc)
return FALSE;
*pb++ = '\0';
*pc++ = '\0';
a = _nm_utils_ascii_str_to_int64 (pa, 16, 0, G_MAXUINT32, -1);
if (a == -1)
return FALSE;
b = _nm_utils_ascii_str_to_int64 (pb, 16, 0, G_MAXUINT32, -1);
if (b == -1)
return FALSE;
c = _nm_utils_ascii_str_to_int64 (pc, 16, 0, G_MAXUINT32, -1);
if (c == -1)
return FALSE;
*out_a = (guint32) a;
*out_b = (guint32) b;
*out_c = (guint32) c;
return TRUE;
}
static gboolean
match_data_s390_subchannels_eval (const char *spec_str,
MatchDeviceData *match_data)
{
guint32 a, b, c;
if (G_UNLIKELY (!match_data->s390_subchannels.is_parsed)) {
match_data->s390_subchannels.is_parsed = TRUE;
if ( !match_data->s390_subchannels.value
|| !match_device_s390_subchannels_parse (match_data->s390_subchannels.value,
&match_data->s390_subchannels.a,
&match_data->s390_subchannels.b,
&match_data->s390_subchannels.c)) {
match_data->s390_subchannels.value = NULL;
return FALSE;
}
} else if (!match_data->s390_subchannels.value)
return FALSE;
if (!match_device_s390_subchannels_parse (spec_str, &a, &b, &c))
return FALSE;
return match_data->s390_subchannels.a == a
&& match_data->s390_subchannels.b == b
&& match_data->s390_subchannels.c == c;
}
static gboolean
match_device_hwaddr_eval (const char *spec_str,
MatchDeviceData *match_data)
{
if (G_UNLIKELY (!match_data->hwaddr.is_parsed)) {
match_data->hwaddr.is_parsed = TRUE;
if (match_data->hwaddr.value) {
gsize l;
if (!_nm_utils_hwaddr_aton (match_data->hwaddr.value, match_data->hwaddr.bin, sizeof (match_data->hwaddr.bin), &l))
g_return_val_if_reached (FALSE);
match_data->hwaddr.len = l;
} else
return FALSE;
} else if (!match_data->hwaddr.len)
return FALSE;
return nm_utils_hwaddr_matches (spec_str, -1, match_data->hwaddr.bin, match_data->hwaddr.len);
}
#define _MATCH_CHECK(spec_str, tag) \
({ \
gboolean _has = FALSE; \
\
if (!g_ascii_strncasecmp (spec_str, (""tag""), NM_STRLEN (tag))) { \
spec_str += NM_STRLEN (tag); \
_has = TRUE; \
} \
_has; \
})
static const char *
match_except (const char *spec_str, gboolean *out_except)
{
if (_MATCH_CHECK (spec_str, EXCEPT_TAG))
*out_except = TRUE;
else
*out_except = FALSE;
return spec_str;
}
static gboolean
match_device_eval (const char *spec_str,
gboolean allow_fuzzy,
MatchDeviceData *match_data)
{
if (spec_str[0] == '*' && spec_str[1] == '\0')
return TRUE;
if (_MATCH_CHECK (spec_str, DEVICE_TYPE_TAG)) {
return match_data->device_type
&& nm_streq (spec_str, match_data->device_type);
}
if (_MATCH_CHECK (spec_str, MAC_TAG))
return match_device_hwaddr_eval (spec_str, match_data);
if (_MATCH_CHECK (spec_str, INTERFACE_NAME_TAG)) {
gboolean use_pattern = FALSE;
if (spec_str[0] == '=')
spec_str += 1;
else {
if (spec_str[0] == '~')
spec_str += 1;
use_pattern = TRUE;
}
if (match_data->interface_name) {
if (nm_streq (spec_str, match_data->interface_name))
return TRUE;
if (use_pattern && g_pattern_match_simple (spec_str, match_data->interface_name))
return TRUE;
}
return FALSE;
}
if (_MATCH_CHECK (spec_str, DRIVER_TAG)) {
const char *t;
if (!match_data->driver)
return FALSE;
/* support:
* 1) "${DRIVER}"
* In this case, DRIVER may not contain a '/' character.
* It matches any driver version.
* 2) "${DRIVER}/${DRIVER_VERSION}"
* In this case, DRIVER may contains '/' but DRIVER_VERSION
* may not. A '/' in DRIVER_VERSION may be replaced by '?'.
*
* It follows, that "${DRIVER}/""*" is like 1), but allows
* '/' inside DRIVER.
*
* The fields match to what `nmcli -f GENERAL.DRIVER,GENERAL.DRIVER-VERSION device show`
* gives. However, DRIVER matches literally, while DRIVER_VERSION is a glob
* supporting ? and *.
*/
t = strrchr (spec_str, '/');
if (!t)
return nm_streq (spec_str, match_data->driver);
return (strncmp (spec_str, match_data->driver, t - spec_str) == 0)
&& g_pattern_match_simple (&t[1],
match_data->driver_version ?: "");
}
if (_MATCH_CHECK (spec_str, SUBCHAN_TAG))
return match_data_s390_subchannels_eval (spec_str, match_data);
if (allow_fuzzy) {
if (match_device_hwaddr_eval (spec_str, match_data))
return TRUE;
if ( match_data->interface_name
&& nm_streq (spec_str, match_data->interface_name))
return TRUE;
}
return FALSE;
}
NMMatchSpecMatchType
nm_match_spec_device (const GSList *specs,
const char *interface_name,
const char *device_type,
const char *driver,
const char *driver_version,
const char *hwaddr,
const char *s390_subchannels)
{
const GSList *iter;
NMMatchSpecMatchType match;
const char *spec_str;
gboolean except;
MatchDeviceData match_data = {
.interface_name = interface_name,
.device_type = nm_str_not_empty (device_type),
.driver = nm_str_not_empty (driver),
.driver_version = nm_str_not_empty (driver_version),
.hwaddr = {
.value = hwaddr,
},
.s390_subchannels = {
.value = s390_subchannels,
},
};
nm_assert (!hwaddr || nm_utils_hwaddr_valid (hwaddr, -1));
if (!specs)
return NM_MATCH_SPEC_NO_MATCH;
match = NM_MATCH_SPEC_NO_MATCH;
/* pre-search for "*" */
for (iter = specs; iter; iter = iter->next) {
spec_str = iter->data;
if (spec_str && spec_str[0] == '*' && spec_str[1] == '\0') {
match = NM_MATCH_SPEC_MATCH;
break;
}
}
for (iter = specs; iter; iter = iter->next) {
spec_str = iter->data;
if (!spec_str || !*spec_str)
continue;
spec_str = match_except (spec_str, &except);
if ( !except
&& match == NM_MATCH_SPEC_MATCH) {
/* we have no "except-match" but already match. No need to evaluate
* the match, we cannot match stronger. */
continue;
}
if (!match_device_eval (spec_str,
!except,
&match_data))
continue;
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
return match;
}
static gboolean
match_config_eval (const char *str, const char *tag, guint cur_nm_version)
{
gs_free char *s_ver = NULL;
gs_strfreev char **s_ver_tokens = NULL;
gint v_maj = -1, v_min = -1, v_mic = -1;
guint c_maj = -1, c_min = -1, c_mic = -1;
guint n_tokens;
s_ver = g_strdup (str);
g_strstrip (s_ver);
/* Let's be strict with the accepted format here. No funny stuff!! */
if (s_ver[strspn (s_ver, ".0123456789")] != '\0')
return FALSE;
s_ver_tokens = g_strsplit (s_ver, ".", -1);
n_tokens = g_strv_length (s_ver_tokens);
if (n_tokens == 0 || n_tokens > 3)
return FALSE;
v_maj = _nm_utils_ascii_str_to_int64 (s_ver_tokens[0], 10, 0, 0xFFFF, -1);
if (v_maj < 0)
return FALSE;
if (n_tokens >= 2) {
v_min = _nm_utils_ascii_str_to_int64 (s_ver_tokens[1], 10, 0, 0xFF, -1);
if (v_min < 0)
return FALSE;
}
if (n_tokens >= 3) {
v_mic = _nm_utils_ascii_str_to_int64 (s_ver_tokens[2], 10, 0, 0xFF, -1);
if (v_mic < 0)
return FALSE;
}
nm_decode_version (cur_nm_version, &c_maj, &c_min, &c_mic);
#define CHECK_AND_RETURN_FALSE(cur, val, tag, is_last_digit) \
G_STMT_START { \
if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MIN)) { \
if (cur < val) \
return FALSE; \
} else if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MAX)) { \
if (cur > val) \
return FALSE; \
} else { \
if (cur != val) \
return FALSE; \
} \
if (!(is_last_digit)) { \
if (cur != val) \
return FALSE; \
} \
} G_STMT_END
if (v_mic >= 0)
CHECK_AND_RETURN_FALSE (c_mic, v_mic, tag, TRUE);
if (v_min >= 0)
CHECK_AND_RETURN_FALSE (c_min, v_min, tag, v_mic < 0);
CHECK_AND_RETURN_FALSE (c_maj, v_maj, tag, v_min < 0);
return TRUE;
}
NMMatchSpecMatchType
nm_match_spec_config (const GSList *specs, guint cur_nm_version, const char *env)
{
const GSList *iter;
NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;
if (!specs)
return NM_MATCH_SPEC_NO_MATCH;
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
gboolean except;
gboolean v_match;
if (!spec_str || !*spec_str)
continue;
spec_str = match_except (spec_str, &except);
if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION))
v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION, cur_nm_version);
else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN))
v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN, cur_nm_version);
else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX))
v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX, cur_nm_version);
else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_ENV))
v_match = env && env[0] && !strcmp (spec_str, env);
else
continue;
if (v_match) {
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
}
return match;
}
#undef _MATCH_CHECK
/**
* nm_match_spec_split:
* @value: the string of device specs
*
* Splits the specs from the string and returns them as individual
* entries in a #GSList.
*
* It does not validate any specs, it basically just does a special
* strsplit with ',' or ';' as separators and supporting '\\' as
* escape character.
*
* Leading and trailing spaces of each entry are removed. But the user
* can preserve them by specifying "\\s has 2 leading" or "has 2 trailing \\s".
*
* Specs can have a qualifier like "interface-name:". We still don't strip
* any whitespace after the colon, so "interface-name: X" matches an interface
* named " X".
*
* Returns: (transfer full): the list of device specs.
*/
GSList *
nm_match_spec_split (const char *value)
{
char *string_value, *p, *q0, *q;
GSList *pieces = NULL;
int trailing_ws;
if (!value || !*value)
return NULL;
/* Copied from glibs g_key_file_parse_value_as_string() function
* and adjusted. */
string_value = g_new (gchar, strlen (value) + 1);
p = (gchar *) value;
/* skip over leading whitespace */
while (g_ascii_isspace (*p))
p++;
q0 = q = string_value;
trailing_ws = 0;
while (*p) {
if (*p == '\\') {
p++;
switch (*p) {
case 's':
*q = ' ';
break;
case 'n':
*q = '\n';
break;
case 't':
*q = '\t';
break;
case 'r':
*q = '\r';
break;
case '\\':
*q = '\\';
break;
case '\0':
break;
default:
if (NM_IN_SET (*p, ',', ';'))
*q = *p;
else {
*q++ = '\\';
*q = *p;
}
break;
}
if (*p == '\0')
break;
p++;
trailing_ws = 0;
} else {
*q = *p;
if (*p == '\0')
break;
if (g_ascii_isspace (*p)) {
trailing_ws++;
p++;
} else if (NM_IN_SET (*p, ',', ';')) {
if (q0 < q - trailing_ws)
pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws));
q0 = q + 1;
p++;
trailing_ws = 0;
while (g_ascii_isspace (*p))
p++;
} else
p++;
}
q++;
}
*q = '\0';
if (q0 < q - trailing_ws)
pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws));
g_free (string_value);
return g_slist_reverse (pieces);
}
/**
* nm_match_spec_join:
* @specs: the device specs to join
*
* This is based on g_key_file_parse_string_as_value(), analog to
* nm_match_spec_split() which is based on g_key_file_parse_value_as_string().
*
* Returns: (transfer full): a joined list of device specs that can be
* split again with nm_match_spec_split(). Note that
* nm_match_spec_split (nm_match_spec_join (specs)) yields the original
* result (which is not true the other way around because there are multiple
* ways to encode the same joined specs string).
*/
char *
nm_match_spec_join (GSList *specs)
{
const char *p;
GString *str;
str = g_string_new ("");
for (; specs; specs = specs->next) {
p = specs->data;
if (!p || !*p)
continue;
if (str->len > 0)
g_string_append_c (str, ',');
/* escape leading whitespace */
switch (*p) {
case ' ':
g_string_append (str, "\\s");
p++;
break;
case '\t':
g_string_append (str, "\\t");
p++;
break;
}
for (; *p; p++) {
switch (*p) {
case '\n':
g_string_append (str, "\\n");
break;
case '\r':
g_string_append (str, "\\r");
break;
case '\\':
g_string_append (str, "\\\\");
break;
case ',':
g_string_append (str, "\\,");
break;
case ';':
g_string_append (str, "\\;");
break;
default:
g_string_append_c (str, *p);
break;
}
}
/* escape trailing whitespaces */
switch (str->str[str->len - 1]) {
case ' ':
g_string_overwrite (str, str->len - 1, "\\s");
break;
case '\t':
g_string_overwrite (str, str->len - 1, "\\t");
break;
}
}
return g_string_free (str, FALSE);
}
/*****************************************************************************/
char *
nm_utils_new_vlan_name (const char *parent_iface, guint32 vlan_id)
{
guint id_len;
gsize parent_len;
char *ifname;
g_return_val_if_fail (parent_iface && *parent_iface, NULL);
if (vlan_id < 10)
id_len = 2;
else if (vlan_id < 100)
id_len = 3;
else if (vlan_id < 1000)
id_len = 4;
else {
g_return_val_if_fail (vlan_id < 4095, NULL);
id_len = 5;
}
ifname = g_new (char, IFNAMSIZ);
parent_len = strlen (parent_iface);
parent_len = MIN (parent_len, IFNAMSIZ - 1 - id_len);
memcpy (ifname, parent_iface, parent_len);
g_snprintf (&ifname[parent_len], IFNAMSIZ - parent_len, ".%u", vlan_id);
return ifname;
}
/* nm_utils_new_infiniband_name:
* @name: the output-buffer where the value will be written. Must be
* not %NULL and point to a string buffer of at least IFNAMSIZ bytes.
* @parent_name: the parent interface name
* @p_key: the partition key.
*
* Returns: the infiniband name will be written to @name and @name
* is returned.
*/
const char *
nm_utils_new_infiniband_name (char *name, const char *parent_name, int p_key)
{
g_return_val_if_fail (name, NULL);
g_return_val_if_fail (parent_name && parent_name[0], NULL);
g_return_val_if_fail (strlen (parent_name) < IFNAMSIZ, NULL);
/* technically, p_key of 0x0000 and 0x8000 is not allowed either. But we don't
* want to assert against that in nm_utils_new_infiniband_name(). So be more
* resilient here, and accept those. */
g_return_val_if_fail (p_key >= 0 && p_key <= 0xffff, NULL);
/* If parent+suffix is too long, kernel would just truncate
* the name. We do the same. See ipoib_vlan_add(). */
g_snprintf (name, IFNAMSIZ, "%s.%04x", parent_name, p_key);
return name;
}
/*****************************************************************************/
gboolean
nm_utils_resolve_conf_parse (int addr_family,
const char *rc_contents,
GArray *nameservers,
GPtrArray *dns_options)
{
guint i;
gboolean changed = FALSE;
gs_free const char **lines = NULL;
gsize l;
g_return_val_if_fail (rc_contents, FALSE);
g_return_val_if_fail (nameservers, FALSE);
g_return_val_if_fail ( ( addr_family == AF_INET
&& g_array_get_element_size (nameservers) == sizeof (in_addr_t))
|| ( addr_family == AF_INET6
&& g_array_get_element_size (nameservers) == sizeof (struct in6_addr)), FALSE);
lines = nm_utils_strsplit_set (rc_contents, "\r\n");
if (!lines)
return FALSE;
/* like glibc's MATCH() macro in resolv/res_init.c. */
#define RC_MATCH(line, option, out_arg) \
({ \
const char *const _line = (line); \
gboolean _match = FALSE; \
\
if ( (strncmp (_line, option, NM_STRLEN (option)) == 0) \
&& (NM_IN_SET (_line[NM_STRLEN (option)], ' ', '\t'))) { \
_match = TRUE;\
(out_arg) = &_line[NM_STRLEN (option) + 1]; \
} \
_match; \
})
for (l = 0; lines[l]; l++) {
const char *const line = lines[l];
const char *s;
if (RC_MATCH (line, "nameserver", s)) {
gs_free char *s_cpy = NULL;
NMIPAddr ns;
s = nm_strstrip_avoid_copy (s, &s_cpy);
if (inet_pton (addr_family, s, &ns) != 1)
continue;
if (addr_family == AF_INET) {
if (!ns.addr4)
continue;
for (i = 0; i < nameservers->len; i++) {
if (g_array_index (nameservers, guint32, i) == ns.addr4)
break;
}
} else {
if (IN6_IS_ADDR_UNSPECIFIED (&ns.addr6))
continue;
for (i = 0; i < nameservers->len; i++) {
struct in6_addr *t = &g_array_index (nameservers, struct in6_addr, i);
if (IN6_ARE_ADDR_EQUAL (t, &ns.addr6))
break;
}
}
if (i == nameservers->len) {
g_array_append_val (nameservers, ns);
changed = TRUE;
}
continue;
}
if (RC_MATCH (line, "options", s)) {
if (!dns_options)
continue;
s = nm_str_skip_leading_spaces (s);
if (s[0]) {
gs_free const char **tokens = NULL;
gsize i_tokens;
tokens = nm_utils_strsplit_set (s, " \t");
nm_assert (tokens);
for (i_tokens = 0; tokens[i_tokens]; i_tokens++) {
gs_free char *t = g_strstrip (g_strdup (tokens[i_tokens]));
if ( _nm_utils_dns_option_validate (t, NULL, NULL,
addr_family == AF_INET6,
_nm_utils_dns_option_descs)
&& _nm_utils_dns_option_find_idx (dns_options, t) < 0) {
g_ptr_array_add (dns_options, g_steal_pointer (&t));
changed = TRUE;
}
}
}
continue;
}
}
return changed;
}
/*****************************************************************************/
/**
* nm_utils_cmp_connection_by_autoconnect_priority:
* @a:
* @b:
*
* compare connections @a and @b for their autoconnect property
* (with sorting the connection that has autoconnect enabled before
* the other)
* If they both have autoconnect enabled, sort them depending on their
* autoconnect-priority (with the higher priority first).
*
* If their autoconnect/autoconnect-priority is the same, 0 is returned.
* That is, they compare equal.
*
* Returns: -1, 0, or 1
*/
int
nm_utils_cmp_connection_by_autoconnect_priority (NMConnection *a, NMConnection *b)
{
NMSettingConnection *a_s_con;
NMSettingConnection *b_s_con;
int a_ap, b_ap;
gboolean can_autoconnect;
if (a == b)
return 0;
if (!a)
return 1;
if (!b)
return -1;
a_s_con = nm_connection_get_setting_connection (a);
b_s_con = nm_connection_get_setting_connection (b);
if (!a_s_con)
return !b_s_con ? 0 : 1;
if (!b_s_con)
return -1;
can_autoconnect = !!nm_setting_connection_get_autoconnect (a_s_con);
if (can_autoconnect != (!!nm_setting_connection_get_autoconnect (b_s_con)))
return can_autoconnect ? -1 : 1;
if (can_autoconnect) {
a_ap = nm_setting_connection_get_autoconnect_priority (a_s_con);
b_ap = nm_setting_connection_get_autoconnect_priority (b_s_con);
if (a_ap != b_ap)
return (a_ap > b_ap) ? -1 : 1;
}
return 0;
}
/*****************************************************************************/
static gint64 monotonic_timestamp_offset_sec;
static int monotonic_timestamp_clock_mode = 0;
static void
monotonic_timestamp_get (struct timespec *tp)
{
int clock_mode = 0;
int err = 0;
switch (monotonic_timestamp_clock_mode) {
case 0:
/* the clock is not yet initialized (first run) */
err = clock_gettime (CLOCK_BOOTTIME, tp);
if (err == -1 && errno == EINVAL) {
clock_mode = 2;
err = clock_gettime (CLOCK_MONOTONIC, tp);
} else
clock_mode = 1;
break;
case 1:
/* default, return CLOCK_BOOTTIME */
err = clock_gettime (CLOCK_BOOTTIME, tp);
break;
case 2:
/* fallback, return CLOCK_MONOTONIC. Kernels prior to 2.6.39
* (released on 18 May, 2011) don't support CLOCK_BOOTTIME. */
err = clock_gettime (CLOCK_MONOTONIC, tp);
break;
}
g_assert (err == 0); (void)err;
g_assert (tp->tv_nsec >= 0 && tp->tv_nsec < NM_UTILS_NS_PER_SECOND);
if (G_LIKELY (clock_mode == 0))
return;
/* Calculate an offset for the time stamp.
*
* We always want positive values, because then we can initialize
* a timestamp with 0 and be sure, that it will be less then any
* value nm_utils_get_monotonic_timestamp_*() might return.
* For this to be true also for nm_utils_get_monotonic_timestamp_s() at
* early boot, we have to shift the timestamp to start counting at
* least from 1 second onward.
*
* Another advantage of shifting is, that this way we make use of the whole 31 bit
* range of signed int, before the time stamp for nm_utils_get_monotonic_timestamp_s()
* wraps (~68 years).
**/
monotonic_timestamp_offset_sec = (- ((gint64) tp->tv_sec)) + 1;
monotonic_timestamp_clock_mode = clock_mode;
if (nm_logging_enabled (LOGL_DEBUG, LOGD_CORE)) {
time_t now = time (NULL);
struct tm tm;
char s[255];
strftime (s, sizeof (s), "%Y-%m-%d %H:%M:%S", localtime_r (&now, &tm));
nm_log_dbg (LOGD_CORE, "monotonic timestamp started counting 1.%09ld seconds ago with "
"an offset of %lld.0 seconds to %s (local time is %s)",
tp->tv_nsec, (long long) -monotonic_timestamp_offset_sec,
clock_mode == 1 ? "CLOCK_BOOTTIME" : "CLOCK_MONOTONIC", s);
}
}
/**
* nm_utils_get_monotonic_timestamp_ns:
*
* Returns: a monotonically increasing time stamp in nanoseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ns (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * NM_UTILS_NS_PER_SECOND +
tp.tv_nsec;
}
/**
* nm_utils_get_monotonic_timestamp_us:
*
* Returns: a monotonically increasing time stamp in microseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_us (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) G_USEC_PER_SEC) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/G_USEC_PER_SEC));
}
/**
* nm_utils_get_monotonic_timestamp_ms:
*
* Returns: a monotonically increasing time stamp in milliseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ms (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) 1000) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/1000));
}
/**
* nm_utils_get_monotonic_timestamp_s:
*
* Returns: nm_utils_get_monotonic_timestamp_ms() in seconds (throwing
* away sub second parts). The returned value will always be positive.
*
* This value wraps after roughly 68 years which should be fine for any
* practical purpose.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint32
nm_utils_get_monotonic_timestamp_s (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec);
}
typedef struct
{
const char *name;
NMSetting *setting;
NMSetting *diff_base_setting;
GHashTable *setting_diff;
} LogConnectionSettingData;
typedef struct
{
const char *item_name;
NMSettingDiffResult diff_result;
} LogConnectionSettingItem;
static gint
_log_connection_sort_hashes_fcn (gconstpointer a, gconstpointer b)
{
const LogConnectionSettingData *v1 = a;
const LogConnectionSettingData *v2 = b;
NMSettingPriority p1, p2;
NMSetting *s1, *s2;
s1 = v1->setting ? v1->setting : v1->diff_base_setting;
s2 = v2->setting ? v2->setting : v2->diff_base_setting;
g_assert (s1 && s2);
p1 = _nm_setting_get_setting_priority (s1);
p2 = _nm_setting_get_setting_priority (s2);
if (p1 != p2)
return p1 > p2 ? 1 : -1;
return strcmp (v1->name, v2->name);
}
static GArray *
_log_connection_sort_hashes (NMConnection *connection, NMConnection *diff_base, GHashTable *connection_diff)
{
GHashTableIter iter;
GArray *sorted_hashes;
LogConnectionSettingData setting_data;
sorted_hashes = g_array_sized_new (TRUE, FALSE, sizeof (LogConnectionSettingData), g_hash_table_size (connection_diff));
g_hash_table_iter_init (&iter, connection_diff);
while (g_hash_table_iter_next (&iter, (gpointer) &setting_data.name, (gpointer) &setting_data.setting_diff)) {
setting_data.setting = nm_connection_get_setting_by_name (connection, setting_data.name);
setting_data.diff_base_setting = diff_base ? nm_connection_get_setting_by_name (diff_base, setting_data.name) : NULL;
g_assert (setting_data.setting || setting_data.diff_base_setting);
g_array_append_val (sorted_hashes, setting_data);
}
g_array_sort (sorted_hashes, _log_connection_sort_hashes_fcn);
return sorted_hashes;
}
static gint
_log_connection_sort_names_fcn (gconstpointer a, gconstpointer b)
{
const LogConnectionSettingItem *v1 = a;
const LogConnectionSettingItem *v2 = b;
/* we want to first show the items, that disappeared, then the one that changed and
* then the ones that were added. */
if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) != (v2->diff_result & NM_SETTING_DIFF_RESULT_IN_A))
return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) ? -1 : 1;
if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) != (v2->diff_result & NM_SETTING_DIFF_RESULT_IN_B))
return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) ? 1 : -1;
return strcmp (v1->item_name, v2->item_name);
}
static char *
_log_connection_get_property (NMSetting *setting, const char *name)
{
GValue val = G_VALUE_INIT;
char *s;
g_return_val_if_fail (setting, NULL);
if ( !NM_IS_SETTING_VPN (setting)
&& nm_setting_get_secret_flags (setting, name, NULL, NULL))
return g_strdup ("****");
if (!_nm_setting_get_property (setting, name, &val))
g_return_val_if_reached (FALSE);
if (G_VALUE_HOLDS_STRING (&val)) {
const char *val_s;
val_s = g_value_get_string (&val);
if (!val_s) {
/* for NULL, we want to return the unquoted string "NULL". */
s = g_strdup ("NULL");
} else {
char *escaped = g_strescape (val_s, "'");
s = g_strdup_printf ("'%s'", escaped);
g_free (escaped);
}
} else {
s = g_strdup_value_contents (&val);
if (s == NULL)
s = g_strdup ("NULL");
else {
char *escaped = g_strescape (s, "'");
g_free (s);
s = escaped;
}
}
g_value_unset(&val);
return s;
}
static void
_log_connection_sort_names (LogConnectionSettingData *setting_data, GArray *sorted_names)
{
GHashTableIter iter;
LogConnectionSettingItem item;
gpointer p;
g_array_set_size (sorted_names, 0);
g_hash_table_iter_init (&iter, setting_data->setting_diff);
while (g_hash_table_iter_next (&iter, (gpointer) &item.item_name, &p)) {
item.diff_result = GPOINTER_TO_UINT (p);
g_array_append_val (sorted_names, item);
}
g_array_sort (sorted_names, _log_connection_sort_names_fcn);
}
void
nm_utils_log_connection_diff (NMConnection *connection, NMConnection *diff_base, guint32 level, guint64 domain, const char *name, const char *prefix)
{
GHashTable *connection_diff = NULL;
GArray *sorted_hashes;
GArray *sorted_names = NULL;
int i, j;
gboolean connection_diff_are_same;
gboolean print_header = TRUE;
gboolean print_setting_header;
GString *str1;
g_return_if_fail (NM_IS_CONNECTION (connection));
g_return_if_fail (!diff_base || (NM_IS_CONNECTION (diff_base) && diff_base != connection));
/* For VPN setting types, this is broken, because we cannot (generically) print the content of data/secrets. Bummer... */
if (!nm_logging_enabled (level, domain))
return;
if (!prefix)
prefix = "";
if (!name)
name = "";
connection_diff_are_same = nm_connection_diff (connection, diff_base,
NM_SETTING_COMPARE_FLAG_EXACT | NM_SETTING_COMPARE_FLAG_DIFF_RESULT_NO_DEFAULT,
&connection_diff);
if (connection_diff_are_same) {
const char *t1, *t2;
t1 = nm_connection_get_connection_type (connection);
if (diff_base) {
t2 = nm_connection_get_connection_type (diff_base);
nm_log (level, domain, NULL, NULL,
"%sconnection '%s' (%p/%s/%s%s%s and %p/%s/%s%s%s): no difference",
prefix, name,
connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1),
diff_base, G_OBJECT_TYPE_NAME (diff_base), NM_PRINT_FMT_QUOTE_STRING (t2));
} else {
nm_log (level, domain, NULL, NULL,
"%sconnection '%s' (%p/%s/%s%s%s): no properties set",
prefix, name,
connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1));
}
g_assert (!connection_diff);
return;
}
/* FIXME: it doesn't nicely show the content of NMSettingVpn, becuase nm_connection_diff() does not
* expand the hash values. */
sorted_hashes = _log_connection_sort_hashes (connection, diff_base, connection_diff);
if (sorted_hashes->len <= 0)
goto out;
sorted_names = g_array_new (FALSE, FALSE, sizeof (LogConnectionSettingItem));
str1 = g_string_new (NULL);
for (i = 0; i < sorted_hashes->len; i++) {
LogConnectionSettingData *setting_data = &g_array_index (sorted_hashes, LogConnectionSettingData, i);
_log_connection_sort_names (setting_data, sorted_names);
print_setting_header = TRUE;
for (j = 0; j < sorted_names->len; j++) {
char *str_conn, *str_diff;
LogConnectionSettingItem *item = &g_array_index (sorted_names, LogConnectionSettingItem, j);
str_conn = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_A)
? _log_connection_get_property (setting_data->setting, item->item_name)
: NULL;
str_diff = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_B)
? _log_connection_get_property (setting_data->diff_base_setting, item->item_name)
: NULL;
if (print_header) {
GError *err_verify = NULL;
const char *path = nm_connection_get_path (connection);
const char *t1, *t2;
t1 = nm_connection_get_connection_type (connection);
if (diff_base) {
t2 = nm_connection_get_connection_type (diff_base);
nm_log (level, domain, NULL, NULL, "%sconnection '%s' (%p/%s/%s%s%s < %p/%s/%s%s%s)%s%s%s:",
prefix, name,
connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1),
diff_base, G_OBJECT_TYPE_NAME (diff_base), NM_PRINT_FMT_QUOTE_STRING (t2),
NM_PRINT_FMT_QUOTED (path, " [", path, "]", ""));
} else {
nm_log (level, domain, NULL, NULL, "%sconnection '%s' (%p/%s/%s%s%s):%s%s%s",
prefix, name,
connection, G_OBJECT_TYPE_NAME (connection), NM_PRINT_FMT_QUOTE_STRING (t1),
NM_PRINT_FMT_QUOTED (path, " [", path, "]", ""));
}
print_header = FALSE;
if (!nm_connection_verify (connection, &err_verify)) {
nm_log (level, domain, NULL, NULL, "%sconnection %p does not verify: %s", prefix, connection, err_verify->message);
g_clear_error (&err_verify);
}
}
#define _NM_LOG_ALIGN "-25"
if (print_setting_header) {
if (diff_base) {
if (setting_data->setting && setting_data->diff_base_setting)
g_string_printf (str1, "%p < %p", setting_data->setting, setting_data->diff_base_setting);
else if (setting_data->diff_base_setting)
g_string_printf (str1, "*missing* < %p", setting_data->diff_base_setting);
else
g_string_printf (str1, "%p < *missing*", setting_data->setting);
nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s [ %s ]", prefix, setting_data->name, str1->str);
} else
nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s [ %p ]", prefix, setting_data->name, setting_data->setting);
print_setting_header = FALSE;
}
g_string_printf (str1, "%s.%s", setting_data->name, item->item_name);
switch (item->diff_result & (NM_SETTING_DIFF_RESULT_IN_A | NM_SETTING_DIFF_RESULT_IN_B)) {
case NM_SETTING_DIFF_RESULT_IN_B:
nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s < %s", prefix, str1->str, str_diff ? str_diff : "NULL");
break;
case NM_SETTING_DIFF_RESULT_IN_A:
nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s = %s", prefix, str1->str, str_conn ? str_conn : "NULL");
break;
default:
nm_log (level, domain, NULL, NULL, "%s%"_NM_LOG_ALIGN"s = %s < %s", prefix, str1->str, str_conn ? str_conn : "NULL", str_diff ? str_diff : "NULL");
break;
#undef _NM_LOG_ALIGN
}
g_free (str_conn);
g_free (str_diff);
}
}
g_array_free (sorted_names, TRUE);
g_string_free (str1, TRUE);
out:
g_hash_table_destroy (connection_diff);
g_array_free (sorted_hashes, TRUE);
}
/**
* nm_utils_monotonic_timestamp_as_boottime:
* @timestamp: the monotonic-timestamp that should be converted into CLOCK_BOOTTIME.
* @timestamp_ns_per_tick: How many nano seconds make one unit of @timestamp? E.g. if
* @timestamp is in unit seconds, pass %NM_UTILS_NS_PER_SECOND; @timestamp in nano
* seconds, pass 1; @timestamp in milli seconds, pass %NM_UTILS_NS_PER_SECOND/1000; etc.
*
* Returns: the monotonic-timestamp as CLOCK_BOOTTIME, as returned by clock_gettime().
* The unit is the same as the passed in @timestamp basd on @timestamp_ns_per_tick.
* E.g. if you passed @timestamp in as seconds, it will return boottime in seconds.
* If @timestamp is a non-positive, it returns -1. Note that a (valid) monotonic-timestamp
* is always positive.
*
* On older kernels that don't support CLOCK_BOOTTIME, the returned time is instead CLOCK_MONOTONIC.
**/
gint64
nm_utils_monotonic_timestamp_as_boottime (gint64 timestamp, gint64 timestamp_ns_per_tick)
{
gint64 offset;
/* only support ns-per-tick being a multiple of 10. */
g_return_val_if_fail (timestamp_ns_per_tick == 1
|| (timestamp_ns_per_tick > 0 &&
timestamp_ns_per_tick <= NM_UTILS_NS_PER_SECOND &&
timestamp_ns_per_tick % 10 == 0),
-1);
/* Check that the timestamp is in a valid range. */
g_return_val_if_fail (timestamp >= 0, -1);
/* if the caller didn't yet ever fetch a monotonic-timestamp, he cannot pass any meaningful
* value (because he has no idea what these timestamps would be). That would be a bug. */
g_return_val_if_fail (monotonic_timestamp_clock_mode != 0, -1);
/* calculate the offset of monotonic-timestamp to boottime. offset_s is <= 1. */
offset = monotonic_timestamp_offset_sec * (NM_UTILS_NS_PER_SECOND / timestamp_ns_per_tick);
/* check for overflow. */
g_return_val_if_fail (offset > 0 || timestamp < G_MAXINT64 + offset, G_MAXINT64);
return timestamp - offset;
}
#define IPV6_PROPERTY_DIR "/proc/sys/net/ipv6/conf/"
#define IPV4_PROPERTY_DIR "/proc/sys/net/ipv4/conf/"
G_STATIC_ASSERT (sizeof (IPV4_PROPERTY_DIR) == sizeof (IPV6_PROPERTY_DIR));
static const char *
_get_property_path (const char *ifname,
const char *property,
gboolean ipv6)
{
static char path[sizeof (IPV6_PROPERTY_DIR) + IFNAMSIZ + 32];
int len;
ifname = NM_ASSERT_VALID_PATH_COMPONENT (ifname);
property = NM_ASSERT_VALID_PATH_COMPONENT (property);
len = g_snprintf (path,
sizeof (path),
"%s%s/%s",
ipv6 ? IPV6_PROPERTY_DIR : IPV4_PROPERTY_DIR,
ifname,
property);
g_assert (len < sizeof (path) - 1);
return path;
}
/**
* nm_utils_ip6_property_path:
* @ifname: an interface name
* @property: a property name
*
* Returns the path to IPv6 property @property on @ifname. Note that
* this uses a static buffer.
*/
const char *
nm_utils_ip6_property_path (const char *ifname, const char *property)
{
return _get_property_path (ifname, property, TRUE);
}
/**
* nm_utils_ip4_property_path:
* @ifname: an interface name
* @property: a property name
*
* Returns the path to IPv4 property @property on @ifname. Note that
* this uses a static buffer.
*/
const char *
nm_utils_ip4_property_path (const char *ifname, const char *property)
{
return _get_property_path (ifname, property, FALSE);
}
gboolean
nm_utils_is_valid_path_component (const char *name)
{
const char *n;
if (name == NULL || name[0] == '\0')
return FALSE;
if (name[0] == '.') {
if (name[1] == '\0')
return FALSE;
if (name[1] == '.' && name[2] == '\0')
return FALSE;
}
n = name;
do {
if (*n == '/')
return FALSE;
} while (*(++n) != '\0');
return TRUE;
}
const char *
NM_ASSERT_VALID_PATH_COMPONENT (const char *name)
{
if (G_LIKELY (nm_utils_is_valid_path_component (name)))
return name;
nm_log_err (LOGD_CORE, "Failed asserting path component: %s%s%s",
NM_PRINT_FMT_QUOTED (name, "\"", name, "\"", "(null)"));
g_error ("FATAL: Failed asserting path component: %s%s%s",
NM_PRINT_FMT_QUOTED (name, "\"", name, "\"", "(null)"));
g_assert_not_reached ();
}
gboolean
nm_utils_is_specific_hostname (const char *name)
{
if (!name)
return FALSE;
if ( strcmp (name, "(none)")
&& strcmp (name, "localhost")
&& strcmp (name, "localhost6")
&& strcmp (name, "localhost.localdomain")
&& strcmp (name, "localhost6.localdomain6"))
return TRUE;
return FALSE;
}
/*****************************************************************************/
gboolean
nm_utils_machine_id_parse (const char *id_str, /*uuid_t*/ guchar *out_uuid)
{
int i;
guint8 v0, v1;
if (!id_str)
return FALSE;
for (i = 0; i < 32; i++) {
if (!g_ascii_isxdigit (id_str[i]))
return FALSE;
}
if (id_str[i] != '\0')
return FALSE;
if (out_uuid) {
for (i = 0; i < 16; i++) {
v0 = g_ascii_xdigit_value (*(id_str++));
v1 = g_ascii_xdigit_value (*(id_str++));
out_uuid[i] = (v0 << 4) + v1;
}
}
return TRUE;
}
char *
nm_utils_machine_id_read (void)
{
gs_free char *contents = NULL;
int i;
/* Get the machine ID from /etc/machine-id; it's always in /etc no matter
* where our configured SYSCONFDIR is. Alternatively, it might be in
* LOCALSTATEDIR /lib/dbus/machine-id.
*/
if ( !g_file_get_contents ("/etc/machine-id", &contents, NULL, NULL)
&& !g_file_get_contents (LOCALSTATEDIR "/lib/dbus/machine-id", &contents, NULL, NULL))
return FALSE;
contents = g_strstrip (contents);
for (i = 0; i < 32; i++) {
if (!g_ascii_isxdigit (contents[i]))
return FALSE;
if (contents[i] >= 'A' && contents[i] <= 'F') {
/* canonicalize to lower-case */
contents[i] = 'a' + (contents[i] - 'A');
}
}
if (contents[i] != '\0')
return FALSE;
return g_steal_pointer (&contents);
}
/*****************************************************************************/
_nm_printf (3, 4)
static int
_get_contents_error (GError **error, int errsv, const char *format, ...)
{
if (errsv < 0)
errsv = -errsv;
else if (!errsv)
errsv = errno;
if (error) {
char *msg;
va_list args;
va_start (args, format);
msg = g_strdup_vprintf (format, args);
va_end (args);
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"%s: %s",
msg, g_strerror (errsv));
g_free (msg);
}
return -errsv;
}
/**
* nm_utils_fd_get_contents:
* @fd: open file descriptor to read. The fd will not be closed,
* but don't rely on it's state afterwards.
* @max_length: allocate at most @max_length bytes. If the
* file is larger, reading will fail. Set to zero to use
* a very large default.
*
* WARNING: @max_length is here to avoid a crash for huge/unlimited files.
* For example, stat(/sys/class/net/enp0s25/ifindex) gives a filesize of
* 4K, although the actual real is small. @max_length is the memory
* allocated in the process of reading the file, thus it must be at least
* the size reported by fstat.
* If you set it to 1K, read will fail because fstat() claims the
* file is larger.
*
* @contents: the output buffer with the file read. It is always
* NUL terminated. The buffer is at most @max_length long, including
* the NUL byte. That is, it reads only files up to a length of
* @max_length - 1 bytes.
* @length: optional output argument of the read file size.
*
* A reimplementation of g_file_get_contents() with a few differences:
* - accepts an open fd, instead of a path name. This allows you to
* use openat().
* - limits the maxium filesize to max_length.
*
* Returns: a negative error code on failure.
*/
int
nm_utils_fd_get_contents (int fd,
gsize max_length,
char **contents,
gsize *length,
GError **error)
{
struct stat stat_buf;
gs_free char *str = NULL;
g_return_val_if_fail (fd >= 0, -EINVAL);
g_return_val_if_fail (contents, -EINVAL);
g_return_val_if_fail (!error || !*error, -EINVAL);
if (fstat (fd, &stat_buf) < 0)
return _get_contents_error (error, 0, "failure during fstat");
if (!max_length) {
/* default to a very large size, but not extreme */
max_length = 2 * 1024 * 1024;
}
if ( stat_buf.st_size > 0
&& S_ISREG (stat_buf.st_mode)) {
const gsize n_stat = stat_buf.st_size;
ssize_t n_read;
if (n_stat > max_length - 1)
return _get_contents_error (error, EMSGSIZE, "file too large (%zu+1 bytes with maximum %zu bytes)", n_stat, max_length);
str = g_try_malloc (n_stat + 1);
if (!str)
return _get_contents_error (error, ENOMEM, "failure to allocate buffer of %zu+1 bytes", n_stat);
n_read = nm_utils_fd_read_loop (fd, str, n_stat, TRUE);
if (n_read < 0)
return _get_contents_error (error, n_read, "error reading %zu bytes from file descriptor", n_stat);
str[n_read] = '\0';
if (n_read < n_stat) {
char *tmp;
tmp = g_try_realloc (str, n_read + 1);
if (!tmp)
return _get_contents_error (error, ENOMEM, "failure to reallocate buffer with %zu bytes", n_read + 1);
str = tmp;
}
NM_SET_OUT (length, n_read);
} else {
nm_auto_fclose FILE *f = NULL;
char buf[4096];
gsize n_have, n_alloc;
if (!(f = fdopen (fd, "r")))
return _get_contents_error (error, 0, "failure during fdopen");
n_have = 0;
n_alloc = 0;
while (!feof (f)) {
int errsv;
gsize n_read;
n_read = fread (buf, 1, sizeof (buf), f);
errsv = errno;
if (ferror (f))
return _get_contents_error (error, errsv, "error during fread");
if ( n_have > G_MAXSIZE - 1 - n_read
|| n_have + n_read + 1 > max_length) {
return _get_contents_error (error, EMSGSIZE, "file stream too large (%zu+1 bytes with maximum %zu bytes)",
(n_have > G_MAXSIZE - 1 - n_read) ? G_MAXSIZE : n_have + n_read,
max_length);
}
if (n_have + n_read + 1 >= n_alloc) {
char *tmp;
if (str) {
if (n_alloc >= max_length / 2)
n_alloc = max_length;
else
n_alloc *= 2;
} else
n_alloc = NM_MIN (n_read + 1, sizeof (buf));
tmp = g_try_realloc (str, n_alloc);
if (!tmp)
return _get_contents_error (error, ENOMEM, "failure to allocate buffer of %zu bytes", n_alloc);
str = tmp;
}
memcpy (str + n_have, buf, n_read);
n_have += n_read;
}
if (n_alloc == 0)
str = g_new0 (gchar, 1);
else {
str[n_have] = '\0';
if (n_have + 1 < n_alloc) {
char *tmp;
tmp = g_try_realloc (str, n_have + 1);
if (!tmp)
return _get_contents_error (error, ENOMEM, "failure to truncate buffer to %zu bytes", n_have + 1);
str = tmp;
}
}
NM_SET_OUT (length, n_have);
}
*contents = g_steal_pointer (&str);
return 0;
}
/**
* nm_utils_file_get_contents:
* @dirfd: optional file descriptor to use openat(). If negative, use plain open().
* @filename: the filename to open. Possibly relative to @dirfd.
* @max_length: allocate at most @max_length bytes.
* WARNING: see nm_utils_fd_get_contents() hint about @max_length.
* @contents: the output buffer with the file read. It is always
* NUL terminated. The buffer is at most @max_length long, including
* the NUL byte. That is, it reads only files up to a length of
* @max_length - 1 bytes.
* @length: optional output argument of the read file size.
*
* A reimplementation of g_file_get_contents() with a few differences:
* - accepts an @dirfd to open @filename relative to that path via openat().
* - limits the maxium filesize to max_length.
* - uses O_CLOEXEC on internal file descriptor
*
* Returns: a negative error code on failure.
*/
int
nm_utils_file_get_contents (int dirfd,
const char *filename,
gsize max_length,
char **contents,
gsize *length,
GError **error)
{
nm_auto_close int fd = -1;
int errsv;
g_return_val_if_fail (filename && filename[0], -EINVAL);
if (dirfd >= 0) {
fd = openat (dirfd, filename, O_RDONLY | O_CLOEXEC);
if (fd < 0) {
errsv = errno;
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"Failed to open file \"%s\" with openat: %s",
filename,
g_strerror (errsv));
return -errsv;
}
} else {
fd = open (filename, O_RDONLY | O_CLOEXEC);
if (fd < 0) {
errsv = errno;
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"Failed to open file \"%s\": %s",
filename,
g_strerror (errsv));
return -errsv;
}
}
return nm_utils_fd_get_contents (fd,
max_length,
contents,
length,
error);
}
/*****************************************************************************/
/* taken from systemd's dev_urandom(). */
int
nm_utils_read_urandom (void *p, size_t nbytes)
{
int fd = -1;
int r;
again:
fd = open ("/dev/urandom", O_RDONLY | O_CLOEXEC | O_NOCTTY);
if (fd < 0) {
r = errno;
if (r == EINTR)
goto again;
return r == ENOENT ? -ENOSYS : -r;
}
r = nm_utils_fd_read_loop_exact (fd, p, nbytes, TRUE);
close (fd);
return r;
}
/*****************************************************************************/
guint8 *
nm_utils_secret_key_read (gsize *out_key_len, GError **error)
{
guint8 *secret_key = NULL;
gsize key_len;
/* out_key_len is not optional, because without it you cannot safely
* access the returned memory. */
*out_key_len = 0;
/* Let's try to load a saved secret key first. */
if (g_file_get_contents (NMSTATEDIR "/secret_key", (char **) &secret_key, &key_len, NULL)) {
if (key_len < 16) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Key is too short to be usable");
key_len = 0;
}
} else {
int r;
mode_t key_mask;
/* RFC7217 mandates the key SHOULD be at least 128 bits.
* Let's use twice as much. */
key_len = 32;
secret_key = g_malloc (key_len);
r = nm_utils_read_urandom (secret_key, key_len);
if (r < 0) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Can't read /dev/urandom: %s", strerror (-r));
key_len = 0;
goto out;
}
key_mask = umask (0077);
if (!g_file_set_contents (NMSTATEDIR "/secret_key", (char *) secret_key, key_len, error)) {
g_prefix_error (error, "Can't write " NMSTATEDIR "/secret_key: ");
key_len = 0;
}
umask (key_mask);
}
out:
if (key_len) {
*out_key_len = key_len;
return secret_key;
}
g_free (secret_key);
return NULL;
}
/*****************************************************************************/
const char *
nm_utils_get_boot_id (void)
{
static const char *boot_id;
if (G_UNLIKELY (!boot_id)) {
gs_free char *contents = NULL;
nm_utils_file_get_contents (-1, "/proc/sys/kernel/random/boot_id", 0,
&contents, NULL, NULL);
if (contents) {
g_strstrip (contents);
if (contents[0]) {
/* clone @contents because we keep @boot_id until the program
* ends.
* nm_utils_file_get_contents() likely allocated a larger
* buffer chunk initially and (although using realloc to shrink
* the buffer) it might not be best to keep this memory
* around. */
boot_id = g_strdup (contents);
}
}
if (!boot_id)
boot_id = nm_utils_uuid_generate ();
}
return boot_id;
}
/*****************************************************************************/
/* Returns the "u" (universal/local) bit value for a Modified EUI-64 */
static gboolean
get_gre_eui64_u_bit (guint32 addr)
{
static const struct {
guint32 mask;
guint32 result;
} items[] = {
{ 0xff000000 }, { 0x7f000000 }, /* IPv4 loopback */
{ 0xf0000000 }, { 0xe0000000 }, /* IPv4 multicast */
{ 0xffffff00 }, { 0xe0000000 }, /* IPv4 local multicast */
{ 0xffffffff }, { INADDR_BROADCAST }, /* limited broadcast */
{ 0xff000000 }, { 0x00000000 }, /* zero net */
{ 0xff000000 }, { 0x0a000000 }, /* private 10 (RFC3330) */
{ 0xfff00000 }, { 0xac100000 }, /* private 172 */
{ 0xffff0000 }, { 0xc0a80000 }, /* private 192 */
{ 0xffff0000 }, { 0xa9fe0000 }, /* IPv4 link-local */
{ 0xffffff00 }, { 0xc0586300 }, /* anycast 6-to-4 */
{ 0xffffff00 }, { 0xc0000200 }, /* test 192 */
{ 0xfffe0000 }, { 0xc6120000 }, /* test 198 */
};
guint i;
for (i = 0; i < G_N_ELEMENTS (items); i++) {
if ((addr & htonl (items[i].mask)) == htonl (items[i].result))
return 0x00; /* "local" scope */
}
return 0x02; /* "universal" scope */
}
/**
* nm_utils_get_ipv6_interface_identifier:
* @link_type: the hardware link type
* @hwaddr: the hardware address of the interface
* @hwaddr_len: the length (in bytes) of @hwaddr
* @dev_id: the device identifier, if any
* @out_iid: on success, filled with the interface identifier; on failure
* zeroed out
*
* Constructs an interface identifier in "Modified EUI-64" format which is
* suitable for constructing IPv6 addresses. Note that the identifier is
* not obscured in any way (eg, RFC3041).
*
* Returns: %TRUE if the interface identifier could be constructed, %FALSE if
* if could not be constructed.
*/
gboolean
nm_utils_get_ipv6_interface_identifier (NMLinkType link_type,
const guint8 *hwaddr,
guint hwaddr_len,
guint dev_id,
NMUtilsIPv6IfaceId *out_iid)
{
guint32 addr;
g_return_val_if_fail (hwaddr != NULL, FALSE);
g_return_val_if_fail (hwaddr_len > 0, FALSE);
g_return_val_if_fail (out_iid != NULL, FALSE);
out_iid->id = 0;
switch (link_type) {
case NM_LINK_TYPE_INFINIBAND:
/* Use the port GUID per http://tools.ietf.org/html/rfc4391#section-8,
* making sure to set the 'u' bit to 1. The GUID is the lower 64 bits
* of the IPoIB interface's hardware address.
*/
g_return_val_if_fail (hwaddr_len == INFINIBAND_ALEN, FALSE);
memcpy (out_iid->id_u8, hwaddr + INFINIBAND_ALEN - 8, 8);
out_iid->id_u8[0] |= 0x02;
return TRUE;
case NM_LINK_TYPE_GRE:
case NM_LINK_TYPE_GRETAP:
/* Hardware address is the network-endian IPv4 address */
g_return_val_if_fail (hwaddr_len == 4, FALSE);
addr = * (guint32 *) hwaddr;
out_iid->id_u8[0] = get_gre_eui64_u_bit (addr);
out_iid->id_u8[1] = 0x00;
out_iid->id_u8[2] = 0x5E;
out_iid->id_u8[3] = 0xFE;
memcpy (out_iid->id_u8 + 4, &addr, 4);
return TRUE;
default:
if (hwaddr_len == ETH_ALEN) {
/* Translate 48-bit MAC address to a 64-bit Modified EUI-64. See
* http://tools.ietf.org/html/rfc4291#appendix-A and the Linux
* kernel's net/ipv6/addrconf.c::ipv6_generate_eui64() function.
*/
out_iid->id_u8[0] = hwaddr[0];
out_iid->id_u8[1] = hwaddr[1];
out_iid->id_u8[2] = hwaddr[2];
if (dev_id) {
out_iid->id_u8[3] = (dev_id >> 8) & 0xff;
out_iid->id_u8[4] = dev_id & 0xff;
} else {
out_iid->id_u8[0] ^= 0x02;
out_iid->id_u8[3] = 0xff;
out_iid->id_u8[4] = 0xfe;
}
out_iid->id_u8[5] = hwaddr[3];
out_iid->id_u8[6] = hwaddr[4];
out_iid->id_u8[7] = hwaddr[5];
return TRUE;
}
break;
}
return FALSE;
}
/*****************************************************************************/
/**
* nm_utils_ipv6_addr_set_interface_identifier:
* @addr: output token encoded as %in6_addr
* @iid: %NMUtilsIPv6IfaceId interface identifier
*
* Converts the %NMUtilsIPv6IfaceId to an %in6_addr (suitable for use
* with Linux platform). This only copies the lower 8 bytes, ignoring
* the /64 network prefix which is expected to be all-zero for a valid
* token.
*/
void
nm_utils_ipv6_addr_set_interface_identifier (struct in6_addr *addr,
const NMUtilsIPv6IfaceId iid)
{
memcpy (addr->s6_addr + 8, &iid.id_u8, 8);
}
/**
* nm_utils_ipv6_interface_identifier_get_from_addr:
* @iid: output %NMUtilsIPv6IfaceId interface identifier set from the token
* @addr: token encoded as %in6_addr
*
* Converts the %in6_addr encoded token (as used by Linux platform) to
* the interface identifier.
*/
void
nm_utils_ipv6_interface_identifier_get_from_addr (NMUtilsIPv6IfaceId *iid,
const struct in6_addr *addr)
{
memcpy (iid, addr->s6_addr + 8, 8);
}
/**
* nm_utils_ipv6_interface_identifier_get_from_token:
* @iid: output %NMUtilsIPv6IfaceId interface identifier set from the token
* @token: token encoded as string
*
* Converts the %in6_addr encoded token (as used in ip6 settings) to
* the interface identifier.
*
* Returns: %TRUE if the @token is a valid token, %FALSE otherwise
*/
gboolean
nm_utils_ipv6_interface_identifier_get_from_token (NMUtilsIPv6IfaceId *iid,
const char *token)
{
struct in6_addr i6_token;
g_return_val_if_fail (token, FALSE);
if (!inet_pton (AF_INET6, token, &i6_token))
return FALSE;
if (!_nm_utils_inet6_is_token (&i6_token))
return FALSE;
nm_utils_ipv6_interface_identifier_get_from_addr (iid, &i6_token);
return TRUE;
}
/**
* nm_utils_inet6_interface_identifier_to_token:
* @iid: %NMUtilsIPv6IfaceId interface identifier
* @buf: the destination buffer or %NULL
*
* Converts the interface identifier to a string token.
* If the destination buffer it set, set it is used to store the
* resulting token, otherwise an internal static buffer is used.
* The buffer needs to be %NM_UTILS_INET_ADDRSTRLEN characters long.
*
* Returns: a statically allocated array. Do not g_free().
*/
const char *
nm_utils_inet6_interface_identifier_to_token (NMUtilsIPv6IfaceId iid, char *buf)
{
struct in6_addr i6_token = { .s6_addr = { 0, } };
nm_utils_ipv6_addr_set_interface_identifier (&i6_token, iid);
return nm_utils_inet6_ntop (&i6_token, buf);
}
/*****************************************************************************/
char *
nm_utils_stable_id_random (void)
{
char buf[15];
if (nm_utils_read_urandom (buf, sizeof (buf)) < 0)
g_return_val_if_reached (nm_utils_uuid_generate ());
return g_base64_encode ((guchar *) buf, sizeof (buf));
}
char *
nm_utils_stable_id_generated_complete (const char *stable_id_generated)
{
guint8 buf[20];
GChecksum *sum;
gsize buf_size;
char *base64;
/* for NM_UTILS_STABLE_TYPE_GENERATED we genererate a possibly long string
* by doing text-substitutions in nm_utils_stable_id_parse().
*
* Let's shorten the (possibly) long stable_id to something more compact. */
g_return_val_if_fail (stable_id_generated, NULL);
sum = g_checksum_new (G_CHECKSUM_SHA1);
nm_assert (sum);
g_checksum_update (sum, (guchar *) stable_id_generated, strlen (stable_id_generated));
buf_size = sizeof (buf);
g_checksum_get_digest (sum, buf, &buf_size);
nm_assert (buf_size == sizeof (buf));
g_checksum_free (sum);
/* we don't care to use the sha1 sum in common hex representation.
* Use instead base64, it's 27 chars (stripping the padding) vs.
* 40. */
base64 = g_base64_encode ((guchar *) buf, sizeof (buf));
nm_assert (strlen (base64) == 28);
nm_assert (base64[27] == '=');
base64[27] = '\0';
return base64;
}
static void
_stable_id_append (GString *str,
const char *substitution)
{
if (!substitution)
substitution = "";
g_string_append_printf (str, "=%zu{%s}", strlen (substitution), substitution);
}
NMUtilsStableType
nm_utils_stable_id_parse (const char *stable_id,
const char *uuid,
const char *bootid,
char **out_generated)
{
gsize i, idx_start;
GString *str = NULL;
g_return_val_if_fail (out_generated, NM_UTILS_STABLE_TYPE_RANDOM);
if (!stable_id) {
*out_generated = NULL;
return NM_UTILS_STABLE_TYPE_UUID;
}
/* the stable-id allows for some dynamic by performing text-substitutions
* of ${...} patterns.
*
* At first, it looks a bit like bash parameter substitution.
* In contrast however, the process is unambigious so that the resulting
* effective id differs if:
* - the original, untranslated stable-id differs
* - or any of the subsitutions differs.
*
* The reason for that is, for example if you specify "${CONNECTION}" in the
* stable-id, then the resulting ID should be always(!) unique for this connection.
* There should be no way another connection could specify any stable-id that results
* in the same addresses to be generated (aside hash collisions).
*
*
* For example: say you have a connection with UUID
* "123e4567-e89b-12d3-a456-426655440000" which happens also to be
* the current boot-id.
* Then:
* (1) connection.stable-id = <NULL>
* (2) connection.stable-id = "123e4567-e89b-12d3-a456-426655440000"
* (3) connection.stable-id = "${CONNECTION}"
* (3) connection.stable-id = "${BOOT}"
* will all generate different addresses, although in one way or the
* other, they all mangle the uuid "123e4567-e89b-12d3-a456-426655440000".
*
* For example, with stable-id="${FOO}${BAR}" the substitutions
* - FOO="ab", BAR="c"
* - FOO="a", BAR="bc"
* should give a different effective id.
*
* For example, with FOO="x" and BAR="x", the stable-ids
* - "${FOO}${BAR}"
* - "${BAR}${FOO}"
* should give a different effective id.
*/
idx_start = 0;
for (i = 0; stable_id[i]; ) {
if (stable_id[i] != '$') {
i++;
continue;
}
#define CHECK_PREFIX(prefix) \
({ \
gboolean _match = FALSE; \
\
if (g_str_has_prefix (&stable_id[i], ""prefix"")) { \
_match = TRUE; \
if (!str) \
str = g_string_sized_new (256); \
i += NM_STRLEN (prefix); \
g_string_append_len (str, &(stable_id)[idx_start], i - idx_start); \
idx_start = i; \
} \
_match; \
})
if (CHECK_PREFIX ("${CONNECTION}"))
_stable_id_append (str, uuid);
else if (CHECK_PREFIX ("${BOOT}"))
_stable_id_append (str, bootid ?: nm_utils_get_boot_id ());
else if (g_str_has_prefix (&stable_id[i], "${RANDOM}")) {
/* RANDOM makes not so much sense for cloned-mac-address
* as the result is simmilar to specyifing "cloned-mac-address=random".
* It makes however sense for RFC 7217 Stable Privacy IPv6 addresses
* where this is effectively the only way to generate a different
* (random) host identifier for each connect.
*
* With RANDOM, the user can switch the lifetime of the
* generated cloned-mac-address and IPv6 host identifier
* by toggeling only the stable-id property of the connection.
* With RANDOM being the most short-lived, ~non-stable~ variant.
*/
if (str)
g_string_free (str, TRUE);
*out_generated = NULL;
return NM_UTILS_STABLE_TYPE_RANDOM;
} else {
/* The text following the '$' is not recognized as valid
* substitution pattern. Treat it verbatim. */
i++;
/* Note that using unrecognized substitution patterns might
* yield different results with future versions. Avoid that,
* by not using '$' (except for actual substitutions) or escape
* it as "$$" (which is guaranteed to be treated verbatim
* in future). */
if (stable_id[i] == '$')
i++;
}
}
#undef CHECK_PREFIX
if (!str) {
*out_generated = NULL;
return NM_UTILS_STABLE_TYPE_STABLE_ID;
}
if (idx_start < i)
g_string_append_len (str, &stable_id[idx_start], i - idx_start);
*out_generated = g_string_free (str, FALSE);
return NM_UTILS_STABLE_TYPE_GENERATED;
}
/*****************************************************************************/
static gboolean
_is_reserved_ipv6_iid (const guint8 *iid)
{
/* https://tools.ietf.org/html/rfc5453 */
/* https://www.iana.org/assignments/ipv6-interface-ids/ipv6-interface-ids.xml */
/* 0000:0000:0000:0000 (Subnet-Router Anycast [RFC4291]) */
if (memcmp (iid, &nm_ip_addr_zero.addr6.s6_addr[8], 8) == 0)
return TRUE;
/* 0200:5EFF:FE00:0000 - 0200:5EFF:FE00:5212 (Reserved IPv6 Interface Identifiers corresponding to the IANA Ethernet Block [RFC4291])
* 0200:5EFF:FE00:5213 (Proxy Mobile IPv6 [RFC6543])
* 0200:5EFF:FE00:5214 - 0200:5EFF:FEFF:FFFF (Reserved IPv6 Interface Identifiers corresponding to the IANA Ethernet Block [RFC4291]) */
if (memcmp (iid, (const guint8[]) { 0x02, 0x00, 0x5E, 0xFF, 0xFE }, 5) == 0)
return TRUE;
/* FDFF:FFFF:FFFF:FF80 - FDFF:FFFF:FFFF:FFFF (Reserved Subnet Anycast Addresses [RFC2526]) */
if (memcmp (iid, (const guint8[]) { 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, 7) == 0) {
if (iid[7] & 0x80)
return TRUE;
}
return FALSE;
}
static gboolean
_set_stable_privacy (NMUtilsStableType stable_type,
struct in6_addr *addr,
const char *ifname,
const char *network_id,
guint32 dad_counter,
guint8 *secret_key,
gsize key_len,
GError **error)
{
GChecksum *sum;
guint8 digest[32];
guint32 tmp[2];
gsize len = sizeof (digest);
nm_assert (key_len);
nm_assert (network_id);
/* Documentation suggests that this can fail.
* Maybe in case of a missing algorithm in crypto library? */
sum = g_checksum_new (G_CHECKSUM_SHA256);
if (!sum) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Can't create a SHA256 hash");
return FALSE;
}
key_len = MIN (key_len, G_MAXUINT32);
if (stable_type != NM_UTILS_STABLE_TYPE_UUID) {
guint8 stable_type_uint8;
nm_assert (stable_type < (NMUtilsStableType) 255);
stable_type_uint8 = (guint8) stable_type;
/* Preferably, we would always like to include the stable-type,
* but for backward compatibility reasons, we cannot for UUID.
*
* That is no real problem and it is still impossible to
* force a collision here, because of how the remaining
* fields are hashed. That is, as we also hash @key_len
* and the terminating '\0' of @network_id, it is unambigiously
* possible to revert the process and deduce the @stable_type.
*/
g_checksum_update (sum, &stable_type_uint8, sizeof (stable_type_uint8));
}
g_checksum_update (sum, addr->s6_addr, 8);
g_checksum_update (sum, (const guchar *) ifname, strlen (ifname) + 1);
g_checksum_update (sum, (const guchar *) network_id, strlen (network_id) + 1);
tmp[0] = htonl (dad_counter);
tmp[1] = htonl (key_len);
g_checksum_update (sum, (const guchar *) tmp, sizeof (tmp));
g_checksum_update (sum, (const guchar *) secret_key, key_len);
g_checksum_get_digest (sum, digest, &len);
nm_assert (len == sizeof (digest));
while (_is_reserved_ipv6_iid (digest)) {
g_checksum_reset (sum);
tmp[0] = htonl (++dad_counter);
g_checksum_update (sum, digest, len);
g_checksum_update (sum, (const guchar *) &tmp[0], sizeof (tmp[0]));
g_checksum_get_digest (sum, digest, &len);
nm_assert (len == sizeof (digest));
}
g_checksum_free (sum);
memcpy (addr->s6_addr + 8, &digest[0], 8);
return TRUE;
}
gboolean
nm_utils_ipv6_addr_set_stable_privacy_impl (NMUtilsStableType stable_type,
struct in6_addr *addr,
const char *ifname,
const char *network_id,
guint32 dad_counter,
guint8 *secret_key,
gsize key_len,
GError **error)
{
return _set_stable_privacy (stable_type, addr, ifname, network_id, dad_counter, secret_key, key_len, error);
}
#define RFC7217_IDGEN_RETRIES 3
/**
* nm_utils_ipv6_addr_set_stable_privacy:
*
* Extend the address prefix with an interface identifier using the
* RFC 7217 Stable Privacy mechanism.
*
* Returns: %TRUE on success, %FALSE if the address could not be generated.
*/
gboolean
nm_utils_ipv6_addr_set_stable_privacy (NMUtilsStableType stable_type,
struct in6_addr *addr,
const char *ifname,
const char *network_id,
guint32 dad_counter,
GError **error)
{
gs_free guint8 *secret_key = NULL;
gsize key_len = 0;
g_return_val_if_fail (network_id, FALSE);
if (dad_counter >= RFC7217_IDGEN_RETRIES) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Too many DAD collisions");
return FALSE;
}
secret_key = nm_utils_secret_key_read (&key_len, error);
if (!secret_key)
return FALSE;
return _set_stable_privacy (stable_type, addr, ifname, network_id, dad_counter,
secret_key, key_len, error);
}
/*****************************************************************************/
static void
_hw_addr_eth_complete (struct ether_addr *addr,
const char *current_mac_address,
const char *generate_mac_address_mask)
{
struct ether_addr mask;
struct ether_addr oui;
struct ether_addr *ouis;
gsize ouis_len;
guint i;
/* the second LSB of the first octet means
* "globally unique, OUI enforced, BIA (burned-in-address)"
* vs. "locally-administered". By default, set it to
* generate locally-administered addresses.
*
* Maybe be overwritten by a mask below. */
addr->ether_addr_octet[0] |= 2;
if (!generate_mac_address_mask || !*generate_mac_address_mask)
goto out;
if (!_nm_utils_generate_mac_address_mask_parse (generate_mac_address_mask,
&mask,
&ouis,
&ouis_len,
NULL))
goto out;
nm_assert ((ouis == NULL) ^ (ouis_len != 0));
if (ouis) {
/* g_random_int() is good enough here. It uses a static GRand instance
* that is seeded from /dev/urandom. */
oui = ouis[g_random_int () % ouis_len];
g_free (ouis);
} else {
if (!nm_utils_hwaddr_aton (current_mac_address, &oui, ETH_ALEN))
goto out;
}
for (i = 0; i < ETH_ALEN; i++) {
const guint8 a = addr->ether_addr_octet[i];
const guint8 o = oui.ether_addr_octet[i];
const guint8 m = mask.ether_addr_octet[i];
addr->ether_addr_octet[i] = (a & ~m) | (o & m);
}
out:
/* The LSB of the first octet must always be cleared,
* it means Unicast vs. Multicast */
addr->ether_addr_octet[0] &= ~1;
}
char *
nm_utils_hw_addr_gen_random_eth (const char *current_mac_address,
const char *generate_mac_address_mask)
{
struct ether_addr bin_addr;
if (nm_utils_read_urandom (&bin_addr, ETH_ALEN) < 0)
return NULL;
_hw_addr_eth_complete (&bin_addr, current_mac_address, generate_mac_address_mask);
return nm_utils_hwaddr_ntoa (&bin_addr, ETH_ALEN);
}
static char *
_hw_addr_gen_stable_eth (NMUtilsStableType stable_type,
const char *stable_id,
const guint8 *secret_key,
gsize key_len,
const char *ifname,
const char *current_mac_address,
const char *generate_mac_address_mask)
{
GChecksum *sum;
guint32 tmp;
guint8 digest[32];
gsize len = sizeof (digest);
struct ether_addr bin_addr;
guint8 stable_type_uint8;
nm_assert (stable_id);
nm_assert (secret_key);
sum = g_checksum_new (G_CHECKSUM_SHA256);
if (!sum)
return NULL;
key_len = MIN (key_len, G_MAXUINT32);
nm_assert (stable_type < (NMUtilsStableType) 255);
stable_type_uint8 = stable_type;
g_checksum_update (sum, (const guchar *) &stable_type_uint8, sizeof (stable_type_uint8));
tmp = htonl ((guint32) key_len);
g_checksum_update (sum, (const guchar *) &tmp, sizeof (tmp));
g_checksum_update (sum, (const guchar *) secret_key, key_len);
g_checksum_update (sum, (const guchar *) (ifname ?: ""), ifname ? (strlen (ifname) + 1) : 1);
g_checksum_update (sum, (const guchar *) stable_id, strlen (stable_id) + 1);
g_checksum_get_digest (sum, digest, &len);
g_checksum_free (sum);
g_return_val_if_fail (len == 32, NULL);
memcpy (&bin_addr, digest, ETH_ALEN);
_hw_addr_eth_complete (&bin_addr, current_mac_address, generate_mac_address_mask);
return nm_utils_hwaddr_ntoa (&bin_addr, ETH_ALEN);
}
char *
nm_utils_hw_addr_gen_stable_eth_impl (NMUtilsStableType stable_type,
const char *stable_id,
const guint8 *secret_key,
gsize key_len,
const char *ifname,
const char *current_mac_address,
const char *generate_mac_address_mask)
{
return _hw_addr_gen_stable_eth (stable_type, stable_id, secret_key, key_len, ifname, current_mac_address, generate_mac_address_mask);
}
char *
nm_utils_hw_addr_gen_stable_eth (NMUtilsStableType stable_type,
const char *stable_id,
const char *ifname,
const char *current_mac_address,
const char *generate_mac_address_mask)
{
gs_free guint8 *secret_key = NULL;
gsize key_len = 0;
g_return_val_if_fail (stable_id, NULL);
secret_key = nm_utils_secret_key_read (&key_len, NULL);
if (!secret_key)
return NULL;
return _hw_addr_gen_stable_eth (stable_type,
stable_id,
secret_key,
key_len,
ifname,
current_mac_address,
generate_mac_address_mask);
}
/*****************************************************************************/
/**
* nm_utils_setpgid:
* @unused: unused
*
* This can be passed as a child setup function to the g_spawn*() family
* of functions, to ensure that the child is in its own process group
* (and thus, in some situations, will not be killed when NetworkManager
* is killed).
*/
void
nm_utils_setpgid (gpointer unused G_GNUC_UNUSED)
{
pid_t pid;
pid = getpid ();
setpgid (pid, pid);
}
/**
* nm_utils_g_value_set_strv:
* @value: a #GValue, initialized to store a #G_TYPE_STRV
* @strings: a #GPtrArray of strings
*
* Converts @strings to a #GStrv and stores it in @value.
*/
void
nm_utils_g_value_set_strv (GValue *value, GPtrArray *strings)
{
char **strv;
int i;
strv = g_new (char *, strings->len + 1);
for (i = 0; i < strings->len; i++)
strv[i] = g_strdup (strings->pdata[i]);
strv[i] = NULL;
g_value_take_boxed (value, strv);
}
/*****************************************************************************/
static gboolean
debug_key_matches (const gchar *key,
const gchar *token,
guint length)
{
/* may not call GLib functions: see note in g_parse_debug_string() */
for (; length; length--, key++, token++) {
char k = (*key == '_') ? '-' : g_ascii_tolower (*key );
char t = (*token == '_') ? '-' : g_ascii_tolower (*token);
if (k != t)
return FALSE;
}
return *key == '\0';
}
/**
* nm_utils_parse_debug_string:
* @string: the string to parse
* @keys: the debug keys
* @nkeys: number of entries in @keys
*
* Similar to g_parse_debug_string(), but does not special
* case "help" or "all".
*
* Returns: the flags
*/
guint
nm_utils_parse_debug_string (const char *string,
const GDebugKey *keys,
guint nkeys)
{
guint i;
guint result = 0;
const char *q;
if (string == NULL)
return 0;
while (*string) {
q = strpbrk (string, ":;, \t");
if (!q)
q = string + strlen (string);
for (i = 0; i < nkeys; i++) {
if (debug_key_matches (keys[i].key, string, q - string))
result |= keys[i].value;
}
string = q;
if (*string)
string++;
}
return result;
}
/*****************************************************************************/
void
nm_utils_ifname_cpy (char *dst, const char *name)
{
g_return_if_fail (dst);
g_return_if_fail (name && name[0]);
nm_assert (nm_utils_is_valid_iface_name (name, NULL));
if (g_strlcpy (dst, name, IFNAMSIZ) >= IFNAMSIZ)
g_return_if_reached ();
}
/*****************************************************************************/
#define IPV4LL_NETWORK (htonl (0xA9FE0000L))
#define IPV4LL_NETMASK (htonl (0xFFFF0000L))
gboolean
nm_utils_ip4_address_is_link_local (in_addr_t addr)
{
return (addr & IPV4LL_NETMASK) == IPV4LL_NETWORK;
}
/*****************************************************************************/
/**
* Takes a pair @timestamp and @duration, and returns the remaining duration based
* on the new timestamp @now.
*/
guint32
nm_utils_lifetime_rebase_relative_time_on_now (guint32 timestamp,
guint32 duration,
gint32 now)
{
gint64 t;
nm_assert (now >= 0);
if (duration == NM_PLATFORM_LIFETIME_PERMANENT)
return NM_PLATFORM_LIFETIME_PERMANENT;
if (timestamp == 0) {
/* if the @timestamp is zero, assume it was just left unset and that the relative
* @duration starts counting from @now. This is convenient to construct an address
* and print it in nm_platform_ip4_address_to_string().
*
* In general it does not make sense to set the @duration without anchoring at
* @timestamp because you don't know the absolute expiration time when looking
* at the address at a later moment. */
timestamp = now;
}
/* For timestamp > now, just accept it and calculate the expected(?) result. */
t = (gint64) timestamp + (gint64) duration - (gint64) now;
if (t <= 0)
return 0;
if (t >= NM_PLATFORM_LIFETIME_PERMANENT)
return NM_PLATFORM_LIFETIME_PERMANENT - 1;
return t;
}
gboolean
nm_utils_lifetime_get (guint32 timestamp,
guint32 lifetime,
guint32 preferred,
gint32 now,
guint32 *out_lifetime,
guint32 *out_preferred)
{
guint32 t_lifetime, t_preferred;
nm_assert (now >= 0);
if (timestamp == 0 && lifetime == 0) {
/* We treat lifetime==0 && timestamp == 0 addresses as permanent addresses to allow easy
* creation of such addresses (without requiring to set the lifetime fields to
* NM_PLATFORM_LIFETIME_PERMANENT). The real lifetime==0 addresses (E.g. DHCP6 telling us
* to drop an address will have timestamp set.
*/
*out_lifetime = NM_PLATFORM_LIFETIME_PERMANENT;
*out_preferred = NM_PLATFORM_LIFETIME_PERMANENT;
g_return_val_if_fail (preferred == 0, TRUE);
} else {
if (now <= 0)
now = nm_utils_get_monotonic_timestamp_s ();
t_lifetime = nm_utils_lifetime_rebase_relative_time_on_now (timestamp, lifetime, now);
if (!t_lifetime) {
*out_lifetime = 0;
*out_preferred = 0;
return FALSE;
}
t_preferred = nm_utils_lifetime_rebase_relative_time_on_now (timestamp, preferred, now);
*out_lifetime = t_lifetime;
*out_preferred = MIN (t_preferred, t_lifetime);
/* Assert that non-permanent addresses have a (positive) @timestamp. nm_utils_lifetime_rebase_relative_time_on_now()
* treats addresses with timestamp 0 as *now*. Addresses passed to _address_get_lifetime() always
* should have a valid @timestamp, otherwise on every re-sync, their lifetime will be extended anew.
*/
g_return_val_if_fail ( timestamp != 0
|| ( lifetime == NM_PLATFORM_LIFETIME_PERMANENT
&& preferred == NM_PLATFORM_LIFETIME_PERMANENT), TRUE);
g_return_val_if_fail (t_preferred <= t_lifetime, TRUE);
}
return TRUE;
}
const char *
nm_utils_dnsmasq_status_to_string (int status, char *dest, gsize size)
{
const char *msg;
nm_utils_to_string_buffer_init (&dest, &size);
if (status == 0)
msg = "Success";
else if (status == 1)
msg = "Configuration problem";
else if (status == 2)
msg = "Network access problem (address in use, permissions)";
else if (status == 3)
msg = "Filesystem problem (missing file/directory, permissions)";
else if (status == 4)
msg = "Memory allocation failure";
else if (status == 5)
msg = "Other problem";
else if (status >= 11) {
g_snprintf (dest, size, "Lease script failed with error %d", status - 10);
return dest;
}
else
msg = "Unknown problem";
g_snprintf (dest, size, "%s (%d)", msg, status);
return dest;
}
/**
* nm_utils_get_reverse_dns_domains_ip4:
* @addr: IP address in network order
* @plen: prefix length
* @domains: array for results
*
* Creates reverse DNS domains for the given address and prefix length, and
* append them to @domains.
*/
void
nm_utils_get_reverse_dns_domains_ip4 (guint32 addr, guint8 plen, GPtrArray *domains)
{
guint32 ip, ip2, mask;
guchar *p;
guint octets;
guint i;
gsize len0, len;
char *str, *s;
g_return_if_fail (domains);
g_return_if_fail (plen <= 32);
if (!plen)
return;
octets = (plen - 1) / 8 + 1;
ip = ntohl (addr);
mask = 0xFFFFFFFF << (32 - plen);
ip &= mask;
ip2 = ip;
len0 = NM_STRLEN ("in-addr.arpa") + (4 * octets) + 1;
while ((ip2 & mask) == ip) {
addr = htonl (ip2);
p = (guchar *) &addr;
len = len0;
str = s = g_malloc (len);
for (i = octets; i > 0; i--)
nm_utils_strbuf_append (&s, &len, "%u.", p[i - 1] & 0xff);
nm_utils_strbuf_append_str (&s, &len, "in-addr.arpa");
g_ptr_array_add (domains, str);
ip2 += 1 << ((32 - plen) & ~7);
}
}
/**
* nm_utils_get_reverse_dns_domains_ip6:
* @addr: IPv6 address
* @plen: prefix length
* @domains: array for results
*
* Creates reverse DNS domains for the given address and prefix length, and
* append them to @domains.
*/
void
nm_utils_get_reverse_dns_domains_ip6 (const struct in6_addr *ip, guint8 plen, GPtrArray *domains)
{
struct in6_addr addr;
guint nibbles, bits, entries;
int i, j;
gsize len0, len;
char *str, *s;
g_return_if_fail (domains);
g_return_if_fail (plen <= 128);
if (!plen)
return;
memcpy (&addr, ip, sizeof (struct in6_addr));
nm_utils_ip6_address_clear_host_address (&addr, &addr, plen);
/* Number of nibbles to include in domains */
nibbles = (plen - 1) / 4 + 1;
/* Prefix length in nibble */
bits = plen - ((plen - 1) / 4 * 4);
/* Number of domains */
entries = 1 << (4 - bits);
len0 = NM_STRLEN ("ip6.arpa") + (2 * nibbles) + 1;
#define N_SHIFT(x) ((x) % 2 ? 0 : 4)
for (i = 0; i < entries; i++) {
len = len0;
str = s = g_malloc (len);
for (j = nibbles - 1; j >= 0; j--)
nm_utils_strbuf_append (&s,
&len,
"%x.",
(addr.s6_addr[j / 2] >> N_SHIFT (j)) & 0xf);
nm_utils_strbuf_append_str (&s, &len, "ip6.arpa");
g_ptr_array_add (domains, str);
addr.s6_addr[(nibbles - 1) / 2] += 1 << N_SHIFT (nibbles - 1);
}
#undef N_SHIFT
}
/**
* Copied from GLib's g_file_set_contents() et al., but allows
* specifying a mode for the new file.
*/
gboolean
nm_utils_file_set_contents (const gchar *filename,
const gchar *contents,
gssize length,
mode_t mode,
GError **error)
{
gs_free char *tmp_name = NULL;
struct stat statbuf;
int errsv;
gssize s;
int fd;
g_return_val_if_fail (filename, FALSE);
g_return_val_if_fail (contents || !length, FALSE);
g_return_val_if_fail (!error || !*error, FALSE);
g_return_val_if_fail (length >= -1, FALSE);
if (length == -1)
length = strlen (contents);
tmp_name = g_strdup_printf ("%s.XXXXXX", filename);
fd = g_mkstemp_full (tmp_name, O_RDWR, mode);
if (fd < 0) {
errsv = errno;
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"failed to create file %s: %s",
tmp_name,
g_strerror (errsv));
return FALSE;
}
while (length > 0) {
s = write (fd, contents, length);
if (s < 0) {
errsv = errno;
if (errsv == EINTR)
continue;
close (fd);
unlink (tmp_name);
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"failed to write to file %s: %s",
tmp_name,
g_strerror (errsv));
return FALSE;
}
g_assert (s <= length);
contents += s;
length -= s;
}
/* If the final destination exists and is > 0 bytes, we want to sync the
* newly written file to ensure the data is on disk when we rename over
* the destination. Otherwise if we get a system crash we can lose both
* the new and the old file on some filesystems. (I.E. those that don't
* guarantee the data is written to the disk before the metadata.)
*/
if ( lstat (filename, &statbuf) == 0
&& statbuf.st_size > 0
&& fsync (fd) != 0) {
errsv = errno;
close (fd);
unlink (tmp_name);
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"failed to fsync %s: %s",
tmp_name,
g_strerror (errsv));
return FALSE;
}
close (fd);
if (rename (tmp_name, filename)) {
errsv = errno;
unlink (tmp_name);
g_set_error (error,
G_FILE_ERROR,
g_file_error_from_errno (errsv),
"failed to rename %s to %s: %s",
tmp_name,
filename,
g_strerror (errsv));
return FALSE;
}
return TRUE;
}
struct plugin_info {
char *path;
struct stat st;
};
static gint
read_device_factory_paths_sort_fcn (gconstpointer a, gconstpointer b)
{
const struct plugin_info *da = a;
const struct plugin_info *db = b;
time_t ta, tb;
ta = MAX (da->st.st_mtime, da->st.st_ctime);
tb = MAX (db->st.st_mtime, db->st.st_ctime);
if (ta < tb)
return 1;
if (ta > tb)
return -1;
return 0;
}
gboolean
nm_utils_validate_plugin (const char *path, struct stat *st, GError **error)
{
g_return_val_if_fail (path, FALSE);
g_return_val_if_fail (st, FALSE);
g_return_val_if_fail (!error || !*error, FALSE);
if (!S_ISREG (st->st_mode)) {
g_set_error_literal (error,
NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"not a regular file");
return FALSE;
}
if (st->st_uid != 0) {
g_set_error_literal (error,
NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"file has invalid owner (should be root)");
return FALSE;
}
if (st->st_mode & (S_IWGRP | S_IWOTH | S_ISUID)) {
g_set_error_literal (error,
NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"file has invalid permissions");
return FALSE;
}
return TRUE;
}
char **
nm_utils_read_plugin_paths (const char *dirname, const char *prefix)
{
GDir *dir;
GError *error = NULL;
const char *item;
GArray *paths;
char **result;
guint i;
g_return_val_if_fail (dirname, NULL);
g_return_val_if_fail (prefix, NULL);
dir = g_dir_open (dirname, 0, &error);
if (!dir) {
nm_log_warn (LOGD_CORE, "device plugin: failed to open directory %s: %s",
dirname,
error->message);
g_clear_error (&error);
return NULL;
}
paths = g_array_new (FALSE, FALSE, sizeof (struct plugin_info));
while ((item = g_dir_read_name (dir))) {
int errsv;
struct plugin_info data;
if (!g_str_has_prefix (item, prefix))
continue;
if (g_str_has_suffix (item, ".la"))
continue;
data.path = g_build_filename (dirname, item, NULL);
if (stat (data.path, &data.st) != 0) {
errsv = errno;
nm_log_warn (LOGD_CORE,
"plugin: skip invalid file %s (error during stat: %s)",
data.path, strerror (errsv));
goto skip;
}
if (!nm_utils_validate_plugin (data.path, &data.st, &error)) {
nm_log_warn (LOGD_CORE,
"plugin: skip invalid file %s: %s",
data.path, error->message);
g_clear_error (&error);
goto skip;
}
g_array_append_val (paths, data);
continue;
skip:
g_free (data.path);
}
g_dir_close (dir);
/* sort filenames by modification time. */
g_array_sort (paths, read_device_factory_paths_sort_fcn);
result = g_new (char *, paths->len + 1);
for (i = 0; i < paths->len; i++)
result[i] = g_array_index (paths, struct plugin_info, i).path;
result[i] = NULL;
g_array_free (paths, TRUE);
return result;
}
char *
nm_utils_format_con_diff_for_audit (GHashTable *diff)
{
GHashTable *setting_diff;
char *setting_name, *prop_name;
GHashTableIter iter, iter2;
GString *str;
str = g_string_sized_new (32);
g_hash_table_iter_init (&iter, diff);
while (g_hash_table_iter_next (&iter,
(gpointer *) &setting_name,
(gpointer *) &setting_diff)) {
if (!setting_diff)
continue;
g_hash_table_iter_init (&iter2, setting_diff);
while (g_hash_table_iter_next (&iter2, (gpointer *) &prop_name, NULL))
g_string_append_printf (str, "%s.%s,", setting_name, prop_name);
}
if (str->len)
str->str[str->len - 1] = '\0';
return g_string_free (str, FALSE);
}
/*****************************************************************************/
NM_UTILS_ENUM2STR_DEFINE (nm_icmpv6_router_pref_to_string, NMIcmpv6RouterPref,
NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_LOW, "low"),
NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_MEDIUM, "medium"),
NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_HIGH, "high"),
NM_UTILS_ENUM2STR (NM_ICMPV6_ROUTER_PREF_INVALID, "invalid"),
);
NM_UTILS_LOOKUP_STR_DEFINE (nm_activation_type_to_string, NMActivationType,
NM_UTILS_LOOKUP_DEFAULT_WARN ("(unknown)"),
NM_UTILS_LOOKUP_STR_ITEM (NM_ACTIVATION_TYPE_MANAGED, "managed"),
NM_UTILS_LOOKUP_STR_ITEM (NM_ACTIVATION_TYPE_ASSUME, "assume"),
NM_UTILS_LOOKUP_STR_ITEM (NM_ACTIVATION_TYPE_EXTERNAL, "external"),
)