Files
NetworkManager/src/NetworkManagerUtils.c
Beniamino Galvani 08c3378f64 core: fix matching of default metric value for static routes
When NM tries to match a generated connection to a persistent one, it
considers also the metric of static routes. However, if the field is
set to -1 (use default value for the device) on the persistent
connection, the comparison will always fail because the generated
connection contains the actual value read from kernel.

To fix the issue, modify check_possible_match() to deal correctly with
-1 and translate it to the expected value for the current device when
performing the comparison.

This allows connections with static routes and default metric to
properly be re-assumed when NM is restarted.

https://bugzilla.redhat.com/show_bug.cgi?id=1302532
2016-02-11 21:57:45 +01:00

3631 lines
108 KiB
C

/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/* NetworkManager -- Network link manager
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Copyright 2004 - 2014 Red Hat, Inc.
* Copyright 2005 - 2008 Novell, Inc.
*/
#include "config.h"
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <resolv.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <linux/if.h>
#include <linux/if_infiniband.h>
#include "nm-default.h"
#include "NetworkManagerUtils.h"
#include "nm-platform.h"
#include "nm-utils.h"
#include "nm-core-internal.h"
#include "nm-device.h"
#include "nm-setting-connection.h"
#include "nm-setting-ip4-config.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"
#include "nm-auth-utils.h"
/*
* Some toolchains (E.G. uClibc 0.9.33 and earlier) don't export
* CLOCK_BOOTTIME even though the kernel supports it, so provide a
* local definition
*/
#ifndef CLOCK_BOOTTIME
#define CLOCK_BOOTTIME 7
#endif
G_STATIC_ASSERT (sizeof (NMUtilsTestFlags) <= sizeof (int));
int _nm_utils_testing = 0;
gboolean
nm_utils_get_testing_initialized ()
{
NMUtilsTestFlags flags;
flags = (NMUtilsTestFlags) _nm_utils_testing;
if (flags == NM_UTILS_TEST_NONE)
flags = (NMUtilsTestFlags) g_atomic_int_get (&_nm_utils_testing);
return flags != NM_UTILS_TEST_NONE;
}
NMUtilsTestFlags
nm_utils_get_testing ()
{
NMUtilsTestFlags flags;
flags = (NMUtilsTestFlags) _nm_utils_testing;
if (flags != NM_UTILS_TEST_NONE) {
/* Flags already initialized. Return them. */
return flags & NM_UTILS_TEST_ALL;
}
/* Accessing nm_utils_get_testing() causes us to set the flags to initialized.
* Detecting running tests also based on g_test_initialized(). */
flags = _NM_UTILS_TEST_INITIALIZED;
if (g_test_initialized ())
flags |= _NM_UTILS_TEST_GENERAL;
if (g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) {
/* Done. We set it. */
return flags & NM_UTILS_TEST_ALL;
}
/* It changed in the meantime (??). Re-read the value. */
return ((NMUtilsTestFlags) _nm_utils_testing) & NM_UTILS_TEST_ALL;
}
void
_nm_utils_set_testing (NMUtilsTestFlags flags)
{
g_assert (!NM_FLAGS_ANY (flags, ~NM_UTILS_TEST_ALL));
/* mask out everything except ALL, and always set GENERAL. */
flags = (flags & NM_UTILS_TEST_ALL) | (_NM_UTILS_TEST_GENERAL | _NM_UTILS_TEST_INITIALIZED);
if (!g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) {
/* We only allow setting _nm_utils_set_testing() once, before fetching the
* value with nm_utils_get_testing(). */
g_return_if_reached ();
}
}
/*****************************************************************************/
G_DEFINE_QUARK (nm-utils-error-quark, nm_utils_error)
void
nm_utils_error_set_cancelled (GError **error,
gboolean is_disposing,
const char *instance_name)
{
if (is_disposing) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_CANCELLED_DISPOSING,
"Disposing %s instance",
instance_name && *instance_name ? instance_name : "source");
} else {
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_CANCELLED,
"Request cancelled");
}
}
gboolean
nm_utils_error_is_cancelled (GError *error,
gboolean consider_is_disposing)
{
if (error) {
if (g_error_matches (error, G_IO_ERROR, G_IO_ERROR_CANCELLED))
return TRUE;
if ( consider_is_disposing
&& g_error_matches (error, NM_UTILS_ERROR, NM_UTILS_ERROR_CANCELLED_DISPOSING))
return TRUE;
}
return FALSE;
}
/*****************************************************************************/
static GSList *_singletons = NULL;
static gboolean _singletons_shutdown = FALSE;
static void
_nm_singleton_instance_weak_cb (gpointer data,
GObject *where_the_object_was)
{
_singletons = g_slist_remove (_singletons, where_the_object_was);
}
static void __attribute__((destructor))
_nm_singleton_instance_destroy (void)
{
_singletons_shutdown = TRUE;
while (_singletons) {
GObject *instance = _singletons->data;
_singletons = g_slist_delete_link (_singletons, _singletons);
g_object_weak_unref (instance, _nm_singleton_instance_weak_cb, NULL);
if (instance->ref_count > 1)
nm_log_dbg (LOGD_CORE, "disown %s singleton (%p)", G_OBJECT_TYPE_NAME (instance), instance);
g_object_unref (instance);
}
}
void
_nm_singleton_instance_register_destruction (GObject *instance)
{
g_return_if_fail (G_IS_OBJECT (instance));
/* Don't allow registration after shutdown. We only destroy the singletons
* once. */
g_return_if_fail (!_singletons_shutdown);
g_object_weak_ref (instance, _nm_singleton_instance_weak_cb, NULL);
_singletons = g_slist_prepend (_singletons, instance);
}
/*****************************************************************************/
gint
nm_utils_ascii_str_to_bool (const char *str,
gint default_value)
{
gsize len;
char *s = NULL;
if (!str)
return default_value;
while (str[0] && g_ascii_isspace (str[0]))
str++;
if (!str[0])
return default_value;
len = strlen (str);
if (g_ascii_isspace (str[len - 1])) {
s = g_strdup (str);
g_strchomp (s);
str = s;
}
if (!g_ascii_strcasecmp (str, "true") || !g_ascii_strcasecmp (str, "yes") || !g_ascii_strcasecmp (str, "on") || !g_ascii_strcasecmp (str, "1"))
default_value = TRUE;
else if (!g_ascii_strcasecmp (str, "false") || !g_ascii_strcasecmp (str, "no") || !g_ascii_strcasecmp (str, "off") || !g_ascii_strcasecmp (str, "0"))
default_value = FALSE;
if (s)
g_free (s);
return default_value;
}
/*****************************************************************************/
/*
* nm_ethernet_address_is_valid:
* @addr: pointer to a binary or ASCII Ethernet address
* @len: length of @addr, or -1 if @addr is ASCII
*
* Compares an Ethernet address against known invalid addresses.
* Returns: %TRUE if @addr is a valid Ethernet address, %FALSE if it is not.
*/
gboolean
nm_ethernet_address_is_valid (gconstpointer addr, gssize len)
{
guint8 invalid_addr[4][ETH_ALEN] = {
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x44, 0x44, 0x44, 0x44, 0x44, 0x44},
{0x00, 0x30, 0xb4, 0x00, 0x00, 0x00}, /* prism54 dummy MAC */
};
guint8 addr_bin[ETH_ALEN];
guint i;
if (!addr) {
g_return_val_if_fail (len == -1 || len == ETH_ALEN, FALSE);
return FALSE;
}
if (len == -1) {
if (!nm_utils_hwaddr_aton (addr, addr_bin, ETH_ALEN))
return FALSE;
addr = addr_bin;
} else if (len != ETH_ALEN)
g_return_val_if_reached (FALSE);
/* Check for multicast address */
if ((((guint8 *) addr)[0]) & 0x01)
return FALSE;
for (i = 0; i < G_N_ELEMENTS (invalid_addr); i++) {
if (nm_utils_hwaddr_matches (addr, ETH_ALEN, invalid_addr[i], ETH_ALEN))
return FALSE;
}
return TRUE;
}
/* nm_utils_ip4_address_clear_host_address:
* @addr: source ip6 address
* @plen: prefix length of network
*
* returns: the input address, with the host address set to 0.
*/
in_addr_t
nm_utils_ip4_address_clear_host_address (in_addr_t addr, guint8 plen)
{
return addr & nm_utils_ip4_prefix_to_netmask (plen);
}
/* nm_utils_ip6_address_clear_host_address:
* @dst: destination output buffer, will contain the network part of the @src address
* @src: source ip6 address
* @plen: prefix length of network
*
* Note: this function is self assignment safe, to update @src inplace, set both
* @dst and @src to the same destination.
*/
const struct in6_addr *
nm_utils_ip6_address_clear_host_address (struct in6_addr *dst, const struct in6_addr *src, guint8 plen)
{
g_return_val_if_fail (plen <= 128, NULL);
g_return_val_if_fail (src, NULL);
g_return_val_if_fail (dst, NULL);
if (plen < 128) {
guint nbytes = plen / 8;
guint nbits = plen % 8;
if (nbytes && dst != src)
memcpy (dst, src, nbytes);
if (nbits) {
dst->s6_addr[nbytes] = (src->s6_addr[nbytes] & (0xFF << (8 - nbits)));
nbytes++;
}
if (nbytes <= 15)
memset (&dst->s6_addr[nbytes], 0, 16 - nbytes);
} else if (src != dst)
*dst = *src;
return dst;
}
void
nm_utils_array_remove_at_indexes (GArray *array, const guint *indexes_to_delete, gsize len)
{
gsize elt_size;
guint index_to_delete;
guint i_src;
guint mm_src, mm_dst, mm_len;
gsize i_itd;
guint res_length;
g_return_if_fail (array);
if (!len)
return;
g_return_if_fail (indexes_to_delete);
elt_size = g_array_get_element_size (array);
i_itd = 0;
index_to_delete = indexes_to_delete[0];
if (index_to_delete >= array->len)
g_return_if_reached ();
res_length = array->len - 1;
mm_dst = index_to_delete;
mm_src = index_to_delete;
mm_len = 0;
for (i_src = index_to_delete; i_src < array->len; i_src++) {
if (i_src < index_to_delete)
mm_len++;
else {
/* we require indexes_to_delete to contain non-repeated, ascending
* indexes. Otherwise we would need to presort the indexes. */
while (TRUE) {
guint dd;
if (i_itd + 1 >= len) {
index_to_delete = G_MAXUINT;
break;
}
dd = indexes_to_delete[++i_itd];
if (dd > index_to_delete) {
if (dd >= array->len)
g_warn_if_reached ();
else {
g_assert (res_length > 0);
res_length--;
}
index_to_delete = dd;
break;
}
g_warn_if_reached ();
}
if (mm_len) {
memmove (&array->data[mm_dst * elt_size],
&array->data[mm_src * elt_size],
mm_len * elt_size);
mm_dst += mm_len;
mm_src += mm_len + 1;
mm_len = 0;
} else
mm_src++;
}
}
if (mm_len) {
memmove (&array->data[mm_dst * elt_size],
&array->data[mm_src * elt_size],
mm_len * elt_size);
}
g_array_set_size (array, res_length);
}
int
nm_spawn_process (const char *args, GError **error)
{
GError *local = NULL;
gint num_args;
char **argv = NULL;
int status = -1;
g_return_val_if_fail (args != NULL, -1);
g_return_val_if_fail (!error || !*error, -1);
if (g_shell_parse_argv (args, &num_args, &argv, &local)) {
g_spawn_sync ("/", argv, NULL, 0, NULL, NULL, NULL, NULL, &status, &local);
g_strfreev (argv);
}
if (local) {
nm_log_warn (LOGD_CORE, "could not spawn process '%s': %s", args, local->message);
g_propagate_error (error, local);
}
return status;
}
static const char *
_trunk_first_line (char *str)
{
char *s;
s = strchr (str, '\n');
if (s)
s[0] = '\0';
return str;
}
int
nm_utils_modprobe (GError **error, gboolean suppress_error_logging, const char *arg1, ...)
{
gs_unref_ptrarray GPtrArray *argv = NULL;
int exit_status;
gs_free char *_log_str = NULL;
#define ARGV_TO_STR(argv) (_log_str ? _log_str : (_log_str = g_strjoinv (" ", (char **) argv->pdata)))
GError *local = NULL;
va_list ap;
NMLogLevel llevel = suppress_error_logging ? LOGL_DEBUG : LOGL_ERR;
gs_free char *std_out = NULL, *std_err = NULL;
g_return_val_if_fail (!error || !*error, -1);
g_return_val_if_fail (arg1, -1);
/* construct the argument list */
argv = g_ptr_array_sized_new (4);
g_ptr_array_add (argv, "/sbin/modprobe");
g_ptr_array_add (argv, (char *) arg1);
va_start (ap, arg1);
while ((arg1 = va_arg (ap, const char *)))
g_ptr_array_add (argv, (char *) arg1);
va_end (ap);
g_ptr_array_add (argv, NULL);
nm_log_dbg (LOGD_CORE, "modprobe: '%s'", ARGV_TO_STR (argv));
if (!g_spawn_sync (NULL, (char **) argv->pdata, NULL, 0, NULL, NULL, &std_out, &std_err, &exit_status, &local)) {
nm_log (llevel, LOGD_CORE, "modprobe: '%s' failed: %s", ARGV_TO_STR (argv), local->message);
g_propagate_error (error, local);
return -1;
} else if (exit_status != 0)
nm_log (llevel, LOGD_CORE, "modprobe: '%s' exited with error %d%s%s%s%s%s%s", ARGV_TO_STR (argv), exit_status,
std_out&&*std_out ? " (" : "", std_out&&*std_out ? _trunk_first_line (std_out) : "", std_out&&*std_out ? ")" : "",
std_err&&*std_err ? " (" : "", std_err&&*std_err ? _trunk_first_line (std_err) : "", std_err&&*std_err ? ")" : "");
return exit_status;
}
/**
* nm_utils_get_start_time_for_pid:
* @pid: the process identifier
* @out_state: return the state character, like R, S, Z. See `man 5 proc`.
* @out_ppid: parent process id
*
* Originally copied from polkit source (src/polkit/polkitunixprocess.c)
* and adjusted.
*
* Returns: the timestamp when the process started (by parsing /proc/$PID/stat).
* If an error occurs (e.g. the process does not exist), 0 is returned.
*
* The returned start time counts since boot, in the unit HZ (with HZ usually being (1/100) seconds)
**/
guint64
nm_utils_get_start_time_for_pid (pid_t pid, char *out_state, pid_t *out_ppid)
{
guint64 start_time;
gs_free gchar *filename = NULL;
gs_free gchar *contents = NULL;
size_t length;
gs_strfreev gchar **tokens = NULL;
guint num_tokens;
gchar *p;
gchar *endp;
char state = '\0';
gint64 ppid = 0;
start_time = 0;
contents = NULL;
g_return_val_if_fail (pid > 0, 0);
filename = g_strdup_printf ("/proc/%"G_GUINT64_FORMAT"/stat", (guint64) pid);
if (!g_file_get_contents (filename, &contents, &length, NULL))
goto out;
/* start time is the token at index 19 after the '(process name)' entry - since only this
* field can contain the ')' character, search backwards for this to avoid malicious
* processes trying to fool us
*/
p = strrchr (contents, ')');
if (p == NULL)
goto out;
p += 2; /* skip ') ' */
if (p - contents >= (int) length)
goto out;
state = p[0];
tokens = g_strsplit (p, " ", 0);
num_tokens = g_strv_length (tokens);
if (num_tokens < 20)
goto out;
if (out_ppid)
ppid = _nm_utils_ascii_str_to_int64 (tokens[1], 10, 1, G_MAXINT, 0);
errno = 0;
start_time = strtoull (tokens[19], &endp, 10);
if (*endp != '\0' || errno != 0)
start_time = 0;
out:
if (out_state)
*out_state = state;
if (out_ppid)
*out_ppid = ppid;
return start_time;
}
/******************************************************************************************/
typedef struct {
pid_t pid;
NMLogDomain log_domain;
union {
struct {
gint64 wait_start_us;
guint source_timeout_kill_id;
} async;
struct {
gboolean success;
int child_status;
} sync;
};
NMUtilsKillChildAsyncCb callback;
void *user_data;
char log_name[1]; /* variable-length object, must be last element!! */
} KillChildAsyncData;
#define LOG_NAME_FMT "kill child process '%s' (%ld)"
#define LOG_NAME_PROCESS_FMT "kill process '%s' (%ld)"
#define LOG_NAME_ARGS log_name,(long)pid
static KillChildAsyncData *
_kc_async_data_alloc (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data)
{
KillChildAsyncData *data;
size_t log_name_len;
/* append the name at the end of our KillChildAsyncData. */
log_name_len = strlen (LOG_NAME_FMT) + 20 + strlen (log_name);
data = g_malloc (sizeof (KillChildAsyncData) - 1 + log_name_len);
g_snprintf (data->log_name, log_name_len, LOG_NAME_FMT, LOG_NAME_ARGS);
data->pid = pid;
data->user_data = user_data;
data->callback = callback;
data->log_domain = log_domain;
return data;
}
#define KC_EXIT_TO_STRING_BUF_SIZE 128
static const char *
_kc_exit_to_string (char *buf, int exit)
#define _kc_exit_to_string(buf, exit) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_EXIT_TO_STRING_BUF_SIZE && sizeof ((buf)[0]) == 1), _kc_exit_to_string (buf, exit) )
{
if (WIFEXITED (exit))
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "normally with status %d", WEXITSTATUS (exit));
else if (WIFSIGNALED (exit))
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "by signal %d", WTERMSIG (exit));
else
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "with unexpected status %d", exit);
return buf;
}
static const char *
_kc_signal_to_string (int sig)
{
switch (sig) {
case 0: return "no signal (0)";
case SIGKILL: return "SIGKILL (" G_STRINGIFY (SIGKILL) ")";
case SIGTERM: return "SIGTERM (" G_STRINGIFY (SIGTERM) ")";
default:
return "Unexpected signal";
}
}
#define KC_WAITED_TO_STRING 100
static const char *
_kc_waited_to_string (char *buf, gint64 wait_start_us)
#define _kc_waited_to_string(buf, wait_start_us) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_WAITED_TO_STRING && sizeof ((buf)[0]) == 1), _kc_waited_to_string (buf, wait_start_us) )
{
g_snprintf (buf, KC_WAITED_TO_STRING, " (%ld usec elapsed)", (long) (nm_utils_get_monotonic_timestamp_us () - wait_start_us));
return buf;
}
static void
_kc_cb_watch_child (GPid pid, gint status, gpointer user_data)
{
KillChildAsyncData *data = user_data;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE], buf_wait[KC_WAITED_TO_STRING];
if (data->async.source_timeout_kill_id)
g_source_remove (data->async.source_timeout_kill_id);
nm_log_dbg (data->log_domain, "%s: terminated %s%s",
data->log_name, _kc_exit_to_string (buf_exit, status),
_kc_waited_to_string (buf_wait, data->async.wait_start_us));
if (data->callback)
data->callback (pid, TRUE, status, data->user_data);
g_free (data);
}
static gboolean
_kc_cb_timeout_grace_period (void *user_data)
{
KillChildAsyncData *data = user_data;
int ret, errsv;
data->async.source_timeout_kill_id = 0;
if ((ret = kill (data->pid, SIGKILL)) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | data->log_domain, "%s: kill(SIGKILL) returned unexpected return value %d: (%s, %d)",
data->log_name, ret, strerror (errsv), errsv);
}
} else {
nm_log_dbg (data->log_domain, "%s: process not terminated after %ld usec. Sending SIGKILL signal",
data->log_name, (long) (nm_utils_get_monotonic_timestamp_us () - data->async.wait_start_us));
}
return G_SOURCE_REMOVE;
}
static gboolean
_kc_invoke_callback_idle (gpointer user_data)
{
KillChildAsyncData *data = user_data;
if (data->sync.success) {
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
nm_log_dbg (data->log_domain, "%s: invoke callback: terminated %s",
data->log_name, _kc_exit_to_string (buf_exit, data->sync.child_status));
} else
nm_log_dbg (data->log_domain, "%s: invoke callback: killing child failed", data->log_name);
data->callback (data->pid, data->sync.success, data->sync.child_status, data->user_data);
g_free (data);
return G_SOURCE_REMOVE;
}
static void
_kc_invoke_callback (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data, gboolean success, int child_status)
{
KillChildAsyncData *data;
if (!callback)
return;
data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
data->sync.success = success;
data->sync.child_status = child_status;
g_idle_add (_kc_invoke_callback_idle, data);
}
/* nm_utils_kill_child_async:
* @pid: the process id of the process to kill
* @sig: signal to send initially. Set to 0 to send not signal.
* @log_domain: the logging domain used for logging (LOGD_NONE to suppress logging)
* @log_name: for logging, the name of the processes to kill
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter is ignored.
* @callback: (allow-none): callback after the child terminated. This function will always
* be invoked asynchronously.
* @user_data: passed on to callback
*
* Uses g_child_watch_add(), so note the glib comment: if you obtain pid from g_spawn_async() or
* g_spawn_async_with_pipes() you will need to pass %G_SPAWN_DO_NOT_REAP_CHILD as flag to the spawn
* function for the child watching to work.
* Also note, that you must g_source_remove() any other child watchers for @pid because glib
* supports only one watcher per child.
**/
void
nm_utils_kill_child_async (pid_t pid, int sig, NMLogDomain log_domain,
const char *log_name, guint32 wait_before_kill_msec,
NMUtilsKillChildAsyncCb callback, void *user_data)
{
int status = 0, errsv;
pid_t ret;
KillChildAsyncData *data;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
g_return_if_fail (pid > 0);
g_return_if_fail (log_name != NULL);
/* let's see if the child already terminated... */
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
return;
} else if (ret != 0) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
LOG_NAME_ARGS, strerror (errsv), errsv);
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
return;
}
}
/* send the first signal. */
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error sending %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
return;
}
/* let's try again with waitpid, probably there was a race... */
ret = waitpid (pid, &status, 0);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
} else {
errsv = errno;
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
}
return;
}
data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
data->async.wait_start_us = nm_utils_get_monotonic_timestamp_us ();
if (sig != SIGKILL && wait_before_kill_msec > 0) {
data->async.source_timeout_kill_id = g_timeout_add (wait_before_kill_msec, _kc_cb_timeout_grace_period, data);
nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s (send SIGKILL in %ld milliseconds)...",
data->log_name, _kc_signal_to_string (sig), (long) wait_before_kill_msec);
} else {
data->async.source_timeout_kill_id = 0;
nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s...",
data->log_name, _kc_signal_to_string (sig));
}
g_child_watch_add (pid, _kc_cb_watch_child, data);
}
static inline gulong
_sleep_duration_convert_ms_to_us (guint32 sleep_duration_msec)
{
if (sleep_duration_msec > 0) {
guint64 x = (gint64) sleep_duration_msec * (guint64) 1000L;
return x < G_MAXULONG ? (gulong) x : G_MAXULONG;
}
return G_USEC_PER_SEC / 20;
}
/* nm_utils_kill_child_sync:
* @pid: process id to kill
* @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
* second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
* @log_domain: log debug information for this domain. Errors and warnings are logged both
* as %LOGD_CORE and @log_domain.
* @log_name: name of the process to kill for logging.
* @child_status: (out) (allow-none): return the exit status of the child, if no error occured.
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has not effect.
* @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
* Set to zero, to use the default (meaning 20 wakeups per seconds).
*
* Kill a child process synchronously and wait. The function first checks if the child already terminated
* and if it did, return the exit status. Otherwise send one @sig signal. @sig will always be
* sent unless the child already exited. If the child does not exit within @wait_before_kill_msec milliseconds,
* the function will send %SIGKILL and waits for the child indefinitly. If @wait_before_kill_msec is zero, no
* %SIGKILL signal will be sent.
*
* In case of error, errno is preserved to contain the last reason of failure.
**/
gboolean
nm_utils_kill_child_sync (pid_t pid, int sig, NMLogDomain log_domain, const char *log_name,
int *child_status, guint32 wait_before_kill_msec,
guint32 sleep_duration_msec)
{
int status = 0, errsv = 0;
pid_t ret;
gboolean success = FALSE;
gboolean was_waiting = FALSE, send_kill = FALSE;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
char buf_wait[KC_WAITED_TO_STRING];
gint64 wait_start_us;
g_return_val_if_fail (pid > 0, FALSE);
g_return_val_if_fail (log_name != NULL, FALSE);
/* check if the child process already terminated... */
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
success = TRUE;
goto out;
} else if (ret != 0) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
LOG_NAME_ARGS, strerror (errsv), errsv);
goto out;
}
}
/* send first signal @sig */
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
} else {
/* let's try again with waitpid, probably there was a race... */
ret = waitpid (pid, &status, 0);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
success = TRUE;
} else {
errsv = errno;
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
}
}
goto out;
}
wait_start_us = nm_utils_get_monotonic_timestamp_us ();
/* wait for the process to terminated... */
if (sig != SIGKILL) {
gint64 wait_until, now;
gulong sleep_time, sleep_duration_usec;
int loop_count = 0;
sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec);
wait_until = wait_before_kill_msec <= 0 ? 0 : wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
while (TRUE) {
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s, process %ld exited %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), (long) ret, _kc_exit_to_string (buf_exit, status),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
success = TRUE;
goto out;
}
if (ret == -1) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s, waitpid failed with %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
goto out;
}
}
if (!wait_until)
break;
now = nm_utils_get_monotonic_timestamp_us ();
if (now >= wait_until)
break;
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting up to %ld milliseconds for process to terminate normally after sending %s...",
LOG_NAME_ARGS, (long) MAX (wait_before_kill_msec, 0), _kc_signal_to_string (sig));
was_waiting = TRUE;
}
sleep_time = MIN (wait_until - now, sleep_duration_usec);
if (loop_count < 20) {
/* At the beginning we expect the process to die fast.
* Limit the sleep time, the limit doubles with every iteration. */
sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
loop_count++;
}
g_usleep (sleep_time);
}
/* send SIGKILL, if called with @wait_before_kill_msec > 0 */
if (wait_until) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": sending SIGKILL...", LOG_NAME_ARGS);
send_kill = TRUE;
if (kill (pid, SIGKILL) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send SIGKILL (after sending %s), %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
goto out;
}
}
}
}
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting for process to terminate after sending %s%s...",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "");
}
/* block until the child terminates. */
while ((ret = waitpid (pid, &status, 0)) <= 0) {
errsv = errno;
if (errsv != EINTR) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s%s, waitpid failed with %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", strerror (errsv), errsv,
_kc_waited_to_string (buf_wait, wait_start_us));
goto out;
}
}
nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s%s, process %ld exited %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", (long) ret,
_kc_exit_to_string (buf_exit, status), _kc_waited_to_string (buf_wait, wait_start_us));
success = TRUE;
out:
if (child_status)
*child_status = success ? status : -1;
errno = success ? 0 : errsv;
return success;
}
/* nm_utils_kill_process_sync:
* @pid: process id to kill
* @start_time: the start time of the process to kill (as obtained by nm_utils_get_start_time_for_pid()).
* This is an optional argument, to avoid (somewhat) killing the wrong process as @pid
* might get recycled. You can pass 0, to not provide this parameter.
* @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
* second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
* @log_domain: log debug information for this domain. Errors and warnings are logged both
* as %LOGD_CORE and @log_domain.
* @log_name: name of the process to kill for logging.
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has no effect.
* If @max_wait_msec is set but less then @wait_before_kill_msec, the final %SIGKILL will also
* not be send.
* @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
* Set to zero, to use the default (meaning 20 wakeups per seconds).
* @max_wait_msec: if 0, waits indefinitely until the process is gone (or a zombie). Otherwise, this
* is the maxium wait time until returning. If @max_wait_msec is non-zero but smaller then @wait_before_kill_msec,
* we will not send a final %SIGKILL.
*
* Kill a non-child process synchronously and wait. This function will not return before the
* process with PID @pid is gone, the process is a zombie, or @max_wait_msec expires.
**/
void
nm_utils_kill_process_sync (pid_t pid, guint64 start_time, int sig, NMLogDomain log_domain,
const char *log_name, guint32 wait_before_kill_msec,
guint32 sleep_duration_msec, guint32 max_wait_msec)
{
int errsv;
guint64 start_time0;
gint64 wait_until_sigkill, now, wait_start_us, max_wait_until;
gulong sleep_time, sleep_duration_usec;
int loop_count = 0;
gboolean was_waiting = FALSE;
char buf_wait[KC_WAITED_TO_STRING];
char p_state;
g_return_if_fail (pid > 0);
g_return_if_fail (log_name != NULL);
g_return_if_fail (wait_before_kill_msec > 0);
start_time0 = nm_utils_get_start_time_for_pid (pid, &p_state, NULL);
if (start_time0 == 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it seems already gone",
LOG_NAME_ARGS, (long int) pid);
return;
}
if (start_time != 0 && start_time != start_time0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": don't kill process %ld because the start_time is unexpectedly %lu instead of %ld",
LOG_NAME_ARGS, (long int) pid, (long unsigned) start_time0, (long unsigned) start_time);
return;
}
switch (p_state) {
case 'Z':
case 'x':
case 'X':
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it is already a zombie (%c)",
LOG_NAME_ARGS, (long int) pid, p_state);
return;
default:
break;
}
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv == ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s because process seems gone",
LOG_NAME_ARGS, _kc_signal_to_string (sig));
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
}
return;
}
/* wait for the process to terminated... */
wait_start_us = nm_utils_get_monotonic_timestamp_us ();
sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec);
if (sig != SIGKILL)
wait_until_sigkill = wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
else
wait_until_sigkill = 0;
if (max_wait_msec > 0) {
max_wait_until = wait_start_us + (((gint64) max_wait_msec) * 1000L);
if (wait_until_sigkill > 0 && wait_until_sigkill > max_wait_msec)
wait_until_sigkill = 0;
} else
max_wait_until = 0;
while (TRUE) {
start_time = nm_utils_get_start_time_for_pid (pid, &p_state, NULL);
if (start_time != start_time0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone after sending signal %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
}
switch (p_state) {
case 'Z':
case 'x':
case 'X':
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is a zombie (%c) after sending signal %s%s",
LOG_NAME_ARGS, p_state, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
default:
break;
}
if (kill (pid, 0) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv == ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie after sending signal %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to kill(%ld, 0): %s (%d)%s",
LOG_NAME_ARGS, (long int) pid, strerror (errsv), errsv,
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
}
return;
}
sleep_time = sleep_duration_usec;
now = nm_utils_get_monotonic_timestamp_us ();
if ( max_wait_until != 0
&& now >= max_wait_until) {
if (wait_until_sigkill != 0) {
/* wait_before_kill_msec is not larger then max_wait_until but we did not yet send
* SIGKILL. Although we already reached our timeout, we don't want to skip sending
* the signal. Even if we don't wait for the process to disappear. */
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
kill (pid, SIGKILL);
}
nm_log_warn (log_domain, LOG_NAME_PROCESS_FMT ": timeout %u msec waiting for process to disappear (after sending %s)%s",
LOG_NAME_ARGS, (unsigned) max_wait_until, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
}
if (wait_until_sigkill != 0) {
if (now >= wait_until_sigkill) {
/* Still not dead. SIGKILL now... */
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
if (kill (pid, SIGKILL) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie%s",
LOG_NAME_ARGS, _kc_waited_to_string (buf_wait, wait_start_us));
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send SIGKILL (after sending %s), %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
_kc_waited_to_string (buf_wait, wait_start_us));
}
return;
}
sig = SIGKILL;
wait_until_sigkill = 0;
loop_count = 0; /* reset the loop_count. Now we really expect the process to die quickly. */
} else
sleep_time = MIN (wait_until_sigkill - now, sleep_duration_usec);
}
if (!was_waiting) {
if (wait_until_sigkill != 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear before sending KILL signal after sending %s...",
LOG_NAME_ARGS, (long) wait_before_kill_msec, _kc_signal_to_string (sig));
} else if (max_wait_until != 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear after sending %s...",
LOG_NAME_ARGS, (long) max_wait_msec, _kc_signal_to_string (sig));
} else {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting for process to disappear after sending %s...",
LOG_NAME_ARGS, _kc_signal_to_string (sig));
}
was_waiting = TRUE;
}
if (loop_count < 20) {
/* At the beginning we expect the process to die fast.
* Limit the sleep time, the limit doubles with every iteration. */
sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
loop_count++;
}
g_usleep (sleep_time);
}
}
#undef LOG_NAME_FMT
#undef LOG_NAME_PROCESS_FMT
#undef LOG_NAME_ARGS
const char *const NM_PATHS_DEFAULT[] = {
PREFIX "/sbin/",
PREFIX "/bin/",
"/sbin/",
"/usr/sbin/",
"/usr/local/sbin/",
"/bin/",
"/usr/bin/",
"/usr/local/bin/",
NULL,
};
const char *
nm_utils_find_helper(const char *progname, const char *try_first, GError **error)
{
return nm_utils_file_search_in_paths (progname, try_first, NM_PATHS_DEFAULT, G_FILE_TEST_IS_EXECUTABLE, NULL, NULL, error);
}
/******************************************************************************************/
#define MAC_TAG "mac:"
#define INTERFACE_NAME_TAG "interface-name:"
#define DEVICE_TYPE_TAG "type:"
#define SUBCHAN_TAG "s390-subchannels:"
#define EXCEPT_TAG "except:"
#define MATCH_TAG_CONFIG_NM_VERSION "nm-version:"
#define MATCH_TAG_CONFIG_NM_VERSION_MIN "nm-version-min:"
#define MATCH_TAG_CONFIG_NM_VERSION_MAX "nm-version-max:"
#define MATCH_TAG_CONFIG_ENV "env:"
#define _spec_has_prefix(pspec, tag) \
({ \
const char **_spec = (pspec); \
gboolean _has = FALSE; \
\
if (!g_ascii_strncasecmp (*_spec, (""tag), STRLEN (tag))) { \
*_spec += STRLEN (tag); \
_has = TRUE; \
} \
_has; \
})
static const char *
_match_except (const char *spec_str, gboolean *out_except)
{
if (!g_ascii_strncasecmp (spec_str, EXCEPT_TAG, STRLEN (EXCEPT_TAG))) {
spec_str += STRLEN (EXCEPT_TAG);
*out_except = TRUE;
} else
*out_except = FALSE;
return spec_str;
}
NMMatchSpecMatchType
nm_match_spec_device_type (const GSList *specs, const char *device_type)
{
const GSList *iter;
NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;
if (!device_type || !*device_type)
return NM_MATCH_SPEC_NO_MATCH;
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
gboolean except;
if (!spec_str || !*spec_str)
continue;
spec_str = _match_except (spec_str, &except);
if (g_ascii_strncasecmp (spec_str, DEVICE_TYPE_TAG, STRLEN (DEVICE_TYPE_TAG)) != 0)
continue;
spec_str += STRLEN (DEVICE_TYPE_TAG);
if (strcmp (spec_str, device_type) == 0) {
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
}
return match;
}
NMMatchSpecMatchType
nm_match_spec_hwaddr (const GSList *specs, const char *hwaddr)
{
const GSList *iter;
NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;
g_return_val_if_fail (hwaddr != NULL, NM_MATCH_SPEC_NO_MATCH);
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
gboolean except;
if (!spec_str || !*spec_str)
continue;
spec_str = _match_except (spec_str, &except);
if ( !g_ascii_strncasecmp (spec_str, INTERFACE_NAME_TAG, STRLEN (INTERFACE_NAME_TAG))
|| !g_ascii_strncasecmp (spec_str, SUBCHAN_TAG, STRLEN (SUBCHAN_TAG))
|| !g_ascii_strncasecmp (spec_str, DEVICE_TYPE_TAG, STRLEN (DEVICE_TYPE_TAG)))
continue;
if (!g_ascii_strncasecmp (spec_str, MAC_TAG, STRLEN (MAC_TAG)))
spec_str += STRLEN (MAC_TAG);
else if (except)
continue;
if (nm_utils_hwaddr_matches (spec_str, -1, hwaddr, -1)) {
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
}
return match;
}
NMMatchSpecMatchType
nm_match_spec_interface_name (const GSList *specs, const char *interface_name)
{
const GSList *iter;
NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;
g_return_val_if_fail (interface_name != NULL, NM_MATCH_SPEC_NO_MATCH);
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
gboolean use_pattern = FALSE;
gboolean except;
if (!spec_str || !*spec_str)
continue;
spec_str = _match_except (spec_str, &except);
if ( !g_ascii_strncasecmp (spec_str, MAC_TAG, STRLEN (MAC_TAG))
|| !g_ascii_strncasecmp (spec_str, SUBCHAN_TAG, STRLEN (SUBCHAN_TAG))
|| !g_ascii_strncasecmp (spec_str, DEVICE_TYPE_TAG, STRLEN (DEVICE_TYPE_TAG)))
continue;
if (!g_ascii_strncasecmp (spec_str, INTERFACE_NAME_TAG, STRLEN (INTERFACE_NAME_TAG))) {
spec_str += STRLEN (INTERFACE_NAME_TAG);
if (spec_str[0] == '=')
spec_str += 1;
else {
if (spec_str[0] == '~')
spec_str += 1;
use_pattern=TRUE;
}
} else if (except)
continue;
if ( !strcmp (spec_str, interface_name)
|| (use_pattern && g_pattern_match_simple (spec_str, interface_name))) {
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
}
return match;
}
#define BUFSIZE 10
static gboolean
parse_subchannels (const char *subchannels, guint32 *a, guint32 *b, guint32 *c)
{
long unsigned int tmp;
char buf[BUFSIZE + 1];
const char *p = subchannels;
int i = 0;
char *pa = NULL, *pb = NULL, *pc = NULL;
g_return_val_if_fail (subchannels != NULL, FALSE);
g_return_val_if_fail (a != NULL, FALSE);
g_return_val_if_fail (*a == 0, FALSE);
g_return_val_if_fail (b != NULL, FALSE);
g_return_val_if_fail (*b == 0, FALSE);
g_return_val_if_fail (c != NULL, FALSE);
g_return_val_if_fail (*c == 0, FALSE);
/* sanity check */
if (!g_ascii_isxdigit (subchannels[0]))
return FALSE;
/* Get the first channel */
while (*p && (*p != ',')) {
if (!g_ascii_isxdigit (*p) && (*p != '.'))
return FALSE; /* Invalid chars */
if (i >= BUFSIZE)
return FALSE; /* Too long to be a subchannel */
buf[i++] = *p++;
}
buf[i] = '\0';
/* and grab each of its elements, there should be 3 */
pa = &buf[0];
pb = strchr (buf, '.');
if (pb)
pc = strchr (pb + 1, '.');
if (!pa || !pb || !pc)
return FALSE;
/* Split the string */
*pb++ = '\0';
*pc++ = '\0';
errno = 0;
tmp = strtoul (pa, NULL, 16);
if (errno)
return FALSE;
*a = (guint32) tmp;
errno = 0;
tmp = strtoul (pb, NULL, 16);
if (errno)
return FALSE;
*b = (guint32) tmp;
errno = 0;
tmp = strtoul (pc, NULL, 16);
if (errno)
return FALSE;
*c = (guint32) tmp;
return TRUE;
}
NMMatchSpecMatchType
nm_match_spec_s390_subchannels (const GSList *specs, const char *subchannels)
{
const GSList *iter;
guint32 a = 0, b = 0, c = 0;
guint32 spec_a = 0, spec_b = 0, spec_c = 0;
NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;
g_return_val_if_fail (subchannels != NULL, NM_MATCH_SPEC_NO_MATCH);
if (!specs)
return NM_MATCH_SPEC_NO_MATCH;
if (!parse_subchannels (subchannels, &a, &b, &c))
return NM_MATCH_SPEC_NO_MATCH;
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
gboolean except;
if (!spec_str || !*spec_str)
continue;
spec_str = _match_except (spec_str, &except);
if (!g_ascii_strncasecmp (spec_str, SUBCHAN_TAG, STRLEN (SUBCHAN_TAG))) {
spec_str += STRLEN (SUBCHAN_TAG);
if (parse_subchannels (spec_str, &spec_a, &spec_b, &spec_c)) {
if (a == spec_a && b == spec_b && c == spec_c) {
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
}
}
}
return match;
}
static gboolean
_match_config_nm_version (const char *str, const char *tag, guint cur_nm_version)
{
gs_free char *s_ver = NULL;
gs_strfreev char **s_ver_tokens = NULL;
gint v_maj = -1, v_min = -1, v_mic = -1;
guint c_maj = -1, c_min = -1, c_mic = -1;
guint n_tokens;
s_ver = g_strdup (str);
g_strstrip (s_ver);
/* Let's be strict with the accepted format here. No funny stuff!! */
if (s_ver[strspn (s_ver, ".0123456789")] != '\0')
return FALSE;
s_ver_tokens = g_strsplit (s_ver, ".", -1);
n_tokens = g_strv_length (s_ver_tokens);
if (n_tokens == 0 || n_tokens > 3)
return FALSE;
v_maj = _nm_utils_ascii_str_to_int64 (s_ver_tokens[0], 10, 0, 0xFFFF, -1);
if (v_maj < 0)
return FALSE;
if (n_tokens >= 2) {
v_min = _nm_utils_ascii_str_to_int64 (s_ver_tokens[1], 10, 0, 0xFF, -1);
if (v_min < 0)
return FALSE;
}
if (n_tokens >= 3) {
v_mic = _nm_utils_ascii_str_to_int64 (s_ver_tokens[2], 10, 0, 0xFF, -1);
if (v_mic < 0)
return FALSE;
}
nm_decode_version (cur_nm_version, &c_maj, &c_min, &c_mic);
#define CHECK_AND_RETURN_FALSE(cur, val, tag, is_last_digit) \
G_STMT_START { \
if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MIN)) { \
if (cur < val) \
return FALSE; \
} else if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MAX)) { \
if (cur > val) \
return FALSE; \
} else { \
if (cur != val) \
return FALSE; \
} \
if (!(is_last_digit)) { \
if (cur != val) \
return FALSE; \
} \
} G_STMT_END
if (v_mic >= 0)
CHECK_AND_RETURN_FALSE (c_mic, v_mic, tag, TRUE);
if (v_min >= 0)
CHECK_AND_RETURN_FALSE (c_min, v_min, tag, v_mic < 0);
CHECK_AND_RETURN_FALSE (c_maj, v_maj, tag, v_min < 0);
return TRUE;
}
NMMatchSpecMatchType
nm_match_spec_match_config (const GSList *specs, guint cur_nm_version, const char *env)
{
const GSList *iter;
NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;
if (!specs)
return NM_MATCH_SPEC_NO_MATCH;
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
gboolean except;
gboolean v_match;
if (!spec_str || !*spec_str)
continue;
spec_str = _match_except (spec_str, &except);
if (_spec_has_prefix (&spec_str, MATCH_TAG_CONFIG_NM_VERSION))
v_match = _match_config_nm_version (spec_str, MATCH_TAG_CONFIG_NM_VERSION, cur_nm_version);
else if (_spec_has_prefix (&spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN))
v_match = _match_config_nm_version (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN, cur_nm_version);
else if (_spec_has_prefix (&spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX))
v_match = _match_config_nm_version (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX, cur_nm_version);
else if (_spec_has_prefix (&spec_str, MATCH_TAG_CONFIG_ENV))
v_match = env && env[0] && !strcmp (spec_str, env);
else
continue;
if (v_match) {
if (except)
return NM_MATCH_SPEC_NEG_MATCH;
match = NM_MATCH_SPEC_MATCH;
}
}
return match;
}
/**
* nm_match_spec_split:
* @value: the string of device specs
*
* Splits the specs from the string and returns them as individual
* entires in a #GSList.
*
* It does not validate any specs, it basically just does a special
* strsplit with ',' or ';' as separators and supporting '\\' as
* escape character.
*
* Leading and trailing spaces of each entry are removed. But the user
* can preserve them by specifying "\\s has 2 leading" or "has 2 trailing \\s".
*
* Specs can have a qualifier like "interface-name:". We still don't strip
* any whitespace after the colon, so "interface-name: X" matches an interface
* named " X".
*
* Returns: (transfer-full): the list of device specs.
*/
GSList *
nm_match_spec_split (const char *value)
{
char *string_value, *p, *q0, *q;
GSList *pieces = NULL;
int trailing_ws;
if (!value || !*value)
return NULL;
/* Copied from glibs g_key_file_parse_value_as_string() function
* and adjusted. */
string_value = g_new (gchar, strlen (value) + 1);
p = (gchar *) value;
/* skip over leading whitespace */
while (g_ascii_isspace (*p))
p++;
q0 = q = string_value;
trailing_ws = 0;
while (*p) {
if (*p == '\\') {
p++;
switch (*p) {
case 's':
*q = ' ';
break;
case 'n':
*q = '\n';
break;
case 't':
*q = '\t';
break;
case 'r':
*q = '\r';
break;
case '\\':
*q = '\\';
break;
case '\0':
break;
default:
if (NM_IN_SET (*p, ',', ';'))
*q = *p;
else {
*q++ = '\\';
*q = *p;
}
break;
}
if (*p == '\0')
break;
p++;
trailing_ws = 0;
} else {
*q = *p;
if (*p == '\0')
break;
if (g_ascii_isspace (*p)) {
trailing_ws++;
p++;
} else if (NM_IN_SET (*p, ',', ';')) {
if (q0 < q - trailing_ws)
pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws));
q0 = q + 1;
p++;
trailing_ws = 0;
while (g_ascii_isspace (*p))
p++;
} else
p++;
}
q++;
}
*q = '\0';
if (q0 < q - trailing_ws)
pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws));
g_free (string_value);
return g_slist_reverse (pieces);
}
/**
* nm_match_spec_join:
* @specs: the device specs to join
*
* This is based on g_key_file_parse_string_as_value(), analog to
* nm_match_spec_split() which is based on g_key_file_parse_value_as_string().
*
* Returns: (transfer-full): a joined list of device specs that can be
* split again with nm_match_spec_split(). Note that
* nm_match_spec_split (nm_match_spec_join (specs)) yields the original
* result (which is not true the other way around because there are multiple
* ways to encode the same joined specs string).
*/
char *
nm_match_spec_join (GSList *specs)
{
const char *p;
GString *str;
str = g_string_new ("");
for (; specs; specs = specs->next) {
p = specs->data;
if (!p || !*p)
continue;
if (str->len > 0)
g_string_append_c (str, ',');
/* escape leading whitespace */
switch (*p) {
case ' ':
g_string_append (str, "\\s");
p++;
break;
case '\t':
g_string_append (str, "\\t");
p++;
break;
}
for (; *p; p++) {
switch (*p) {
case '\n':
g_string_append (str, "\\n");
break;
case '\r':
g_string_append (str, "\\r");
break;
case '\\':
g_string_append (str, "\\\\");
break;
case ',':
g_string_append (str, "\\,");
break;
case ';':
g_string_append (str, "\\;");
break;
default:
g_string_append_c (str, *p);
break;
}
}
/* escape trailing whitespaces */
switch (str->str[str->len - 1]) {
case ' ':
g_string_overwrite (str, str->len - 1, "\\s");
break;
case '\t':
g_string_overwrite (str, str->len - 1, "\\t");
break;
}
}
return g_string_free (str, FALSE);
}
/*****************************************************************************/
char _nm_utils_to_string_buffer[];
void
nm_utils_to_string_buffer_init (char **buf, gsize *len)
{
if (!*buf) {
*buf = _nm_utils_to_string_buffer;
*len = sizeof (_nm_utils_to_string_buffer);
}
}
gboolean
nm_utils_to_string_buffer_init_null (gconstpointer obj, char **buf, gsize *len)
{
nm_utils_to_string_buffer_init (buf, len);
if (!obj) {
g_strlcpy (*buf, "(null)", *len);
return FALSE;
}
return TRUE;
}
void
nm_utils_strbuf_append_c (char **buf, gsize *len, char c)
{
switch (*len) {
case 0:
return;
case 1:
(*buf)[0] = '\0';
*len = 0;
(*buf)++;
return;
default:
(*buf)[0] = c;
(*buf)[1] = '\0';
(*len)--;
(*buf)++;
return;
}
}
void
nm_utils_strbuf_append_str (char **buf, gsize *len, const char *str)
{
gsize src_len;
switch (*len) {
case 0:
return;
case 1:
if (!str || !*str) {
(*buf)[0] = '\0';
return;
}
(*buf)[0] = '\0';
*len = 0;
(*buf)++;
return;
default:
if (!str || !*str) {
(*buf)[0] = '\0';
return;
}
src_len = g_strlcpy (*buf, str, *len);
if (src_len >= *len) {
*buf = &(*buf)[*len];
*len = 0;
} else {
*buf = &(*buf)[src_len];
*len -= src_len;
}
return;
}
}
void
nm_utils_strbuf_append (char **buf, gsize *len, const char *format, ...)
{
char *p = *buf;
va_list args;
gint retval;
if (*len == 0)
return;
va_start (args, format);
retval = g_vsnprintf (p, *len, format, args);
va_end (args);
if (retval >= *len) {
*buf = &p[*len];
*len = 0;
} else {
*buf = &p[retval];
*len -= retval;
}
}
const char *
nm_utils_flags2str (const NMUtilsFlags2StrDesc *descs,
gsize n_descs,
unsigned flags,
char *buf,
gsize len)
{
gsize i;
char *p;
#if NM_MORE_ASSERTS > 10
nm_assert (descs);
nm_assert (n_descs > 0);
for (i = 0; i < n_descs; i++) {
gsize j;
nm_assert (descs[i].flag && nm_utils_is_power_of_two (descs[i].flag));
nm_assert (descs[i].name && descs[i].name[0]);
for (j = 0; j < i; j++)
nm_assert (descs[j].flag != descs[i].flag);
}
#endif
nm_utils_to_string_buffer_init (&buf, &len);
if (!len)
return buf;
buf[0] = '\0';
if (!flags) {
return buf;
}
p = buf;
for (i = 0; flags && i < n_descs; i++) {
if (NM_FLAGS_HAS (flags, descs[i].flag)) {
flags &= ~descs[i].flag;
if (buf[0] != '\0')
nm_utils_strbuf_append_c (&p, &len, ',');
nm_utils_strbuf_append_str (&p, &len, descs[i].name);
}
}
if (flags) {
if (buf[0] != '\0')
nm_utils_strbuf_append_c (&p, &len, ',');
nm_utils_strbuf_append (&p, &len, "0x%x", flags);
}
return buf;
};
/*****************************************************************************/
/**
* nm_utils_get_shared_wifi_permission:
* @connection: the NMConnection to lookup the permission.
*
* Returns: a static string of the wifi-permission (if any) or %NULL.
*/
const char *
nm_utils_get_shared_wifi_permission (NMConnection *connection)
{
NMSettingWireless *s_wifi;
NMSettingWirelessSecurity *s_wsec;
const char *method = NULL;
method = nm_utils_get_ip_config_method (connection, NM_TYPE_SETTING_IP4_CONFIG);
if (strcmp (method, NM_SETTING_IP4_CONFIG_METHOD_SHARED) != 0)
return NULL; /* Not shared */
s_wifi = nm_connection_get_setting_wireless (connection);
if (s_wifi) {
s_wsec = nm_connection_get_setting_wireless_security (connection);
if (s_wsec)
return NM_AUTH_PERMISSION_WIFI_SHARE_PROTECTED;
else
return NM_AUTH_PERMISSION_WIFI_SHARE_OPEN;
}
return NULL;
}
/*********************************/
static char *
get_new_connection_name (const GSList *existing,
const char *preferred,
const char *fallback_prefix)
{
GSList *names = NULL;
const GSList *iter;
char *cname = NULL;
int i = 0;
gboolean preferred_found = FALSE;
g_assert (fallback_prefix);
for (iter = existing; iter; iter = g_slist_next (iter)) {
NMConnection *candidate = NM_CONNECTION (iter->data);
const char *id;
id = nm_connection_get_id (candidate);
g_assert (id);
names = g_slist_append (names, (gpointer) id);
if (preferred && !preferred_found && (strcmp (preferred, id) == 0))
preferred_found = TRUE;
}
/* Return the preferred name if it was unique */
if (preferred && !preferred_found) {
g_slist_free (names);
return g_strdup (preferred);
}
/* Otherwise find the next available unique connection name using the given
* connection name template.
*/
while (!cname && (i++ < 10000)) {
char *temp;
gboolean found = FALSE;
/* Translators: the first %s is a prefix for the connection id, such
* as "Wired Connection" or "VPN Connection". The %d is a number
* that is combined with the first argument to create a unique
* connection id. */
temp = g_strdup_printf (C_("connection id fallback", "%s %d"),
fallback_prefix, i);
for (iter = names; iter; iter = g_slist_next (iter)) {
if (!strcmp (iter->data, temp)) {
found = TRUE;
break;
}
}
if (!found)
cname = temp;
else
g_free (temp);
}
g_slist_free (names);
return cname;
}
static char *
get_new_connection_ifname (const GSList *existing,
const char *prefix)
{
int i;
char *name;
const GSList *iter;
gboolean found;
for (i = 0; i < 500; i++) {
name = g_strdup_printf ("%s%d", prefix, i);
if (nm_platform_link_get_by_ifname (NM_PLATFORM_GET, name))
goto next;
for (iter = existing, found = FALSE; iter; iter = g_slist_next (iter)) {
NMConnection *candidate = iter->data;
if (g_strcmp0 (nm_connection_get_interface_name (candidate), name) == 0) {
found = TRUE;
break;
}
}
if (!found)
return name;
next:
g_free (name);
}
return NULL;
}
const char *
nm_utils_get_ip_config_method (NMConnection *connection,
GType ip_setting_type)
{
NMSettingConnection *s_con;
NMSettingIPConfig *s_ip4, *s_ip6;
const char *method;
s_con = nm_connection_get_setting_connection (connection);
if (ip_setting_type == NM_TYPE_SETTING_IP4_CONFIG) {
g_return_val_if_fail (s_con != NULL, NM_SETTING_IP4_CONFIG_METHOD_AUTO);
if (nm_setting_connection_get_master (s_con))
return NM_SETTING_IP4_CONFIG_METHOD_DISABLED;
else {
s_ip4 = nm_connection_get_setting_ip4_config (connection);
if (!s_ip4)
return NM_SETTING_IP4_CONFIG_METHOD_DISABLED;
method = nm_setting_ip_config_get_method (s_ip4);
g_return_val_if_fail (method != NULL, NM_SETTING_IP4_CONFIG_METHOD_AUTO);
return method;
}
} else if (ip_setting_type == NM_TYPE_SETTING_IP6_CONFIG) {
g_return_val_if_fail (s_con != NULL, NM_SETTING_IP6_CONFIG_METHOD_AUTO);
if (nm_setting_connection_get_master (s_con))
return NM_SETTING_IP6_CONFIG_METHOD_IGNORE;
else {
s_ip6 = nm_connection_get_setting_ip6_config (connection);
if (!s_ip6)
return NM_SETTING_IP6_CONFIG_METHOD_IGNORE;
method = nm_setting_ip_config_get_method (s_ip6);
g_return_val_if_fail (method != NULL, NM_SETTING_IP6_CONFIG_METHOD_AUTO);
return method;
}
} else
g_assert_not_reached ();
}
void
nm_utils_complete_generic (NMConnection *connection,
const char *ctype,
const GSList *existing,
const char *preferred_id,
const char *fallback_id_prefix,
const char *ifname_prefix,
gboolean default_enable_ipv6)
{
NMSettingConnection *s_con;
char *id, *uuid, *ifname;
GHashTable *parameters;
g_assert (fallback_id_prefix);
s_con = nm_connection_get_setting_connection (connection);
if (!s_con) {
s_con = (NMSettingConnection *) nm_setting_connection_new ();
nm_connection_add_setting (connection, NM_SETTING (s_con));
}
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_TYPE, ctype, NULL);
if (!nm_setting_connection_get_uuid (s_con)) {
uuid = nm_utils_uuid_generate ();
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_UUID, uuid, NULL);
g_free (uuid);
}
/* Add a connection ID if absent */
if (!nm_setting_connection_get_id (s_con)) {
id = get_new_connection_name (existing, preferred_id, fallback_id_prefix);
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_ID, id, NULL);
g_free (id);
}
/* Add an interface name, if requested */
if (ifname_prefix && !nm_setting_connection_get_interface_name (s_con)) {
ifname = get_new_connection_ifname (existing, ifname_prefix);
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_INTERFACE_NAME, ifname, NULL);
g_free (ifname);
}
/* Normalize */
parameters = g_hash_table_new (g_str_hash, g_str_equal);
g_hash_table_insert (parameters, NM_CONNECTION_NORMALIZE_PARAM_IP6_CONFIG_METHOD,
default_enable_ipv6 ? NM_SETTING_IP6_CONFIG_METHOD_AUTO : NM_SETTING_IP6_CONFIG_METHOD_IGNORE);
nm_connection_normalize (connection, parameters, NULL, NULL);
g_hash_table_destroy (parameters);
}
char *
nm_utils_new_vlan_name (const char *parent_iface, guint32 vlan_id)
{
guint id_len;
gsize parent_len;
char *ifname;
g_return_val_if_fail (parent_iface && *parent_iface, NULL);
if (vlan_id < 10)
id_len = 2;
else if (vlan_id < 100)
id_len = 3;
else if (vlan_id < 1000)
id_len = 4;
else {
g_return_val_if_fail (vlan_id < 4095, NULL);
id_len = 5;
}
ifname = g_new (char, IFNAMSIZ);
parent_len = strlen (parent_iface);
parent_len = MIN (parent_len, IFNAMSIZ - 1 - id_len);
memcpy (ifname, parent_iface, parent_len);
g_snprintf (&ifname[parent_len], IFNAMSIZ - parent_len, ".%u", vlan_id);
return ifname;
}
/**
* nm_utils_read_resolv_conf_nameservers():
* @rc_contents: contents of a resolv.conf; or %NULL to read /etc/resolv.conf
*
* Reads all nameservers out of @rc_contents or /etc/resolv.conf and returns
* them.
*
* Returns: a #GPtrArray of 'char *' elements of each nameserver line from
* @contents or resolv.conf
*/
GPtrArray *
nm_utils_read_resolv_conf_nameservers (const char *rc_contents)
{
GPtrArray *nameservers = NULL;
char *contents = NULL;
char **lines, **iter;
char *p;
if (rc_contents)
contents = g_strdup (rc_contents);
else {
if (!g_file_get_contents (_PATH_RESCONF, &contents, NULL, NULL))
return NULL;
}
nameservers = g_ptr_array_new_full (3, g_free);
lines = g_strsplit_set (contents, "\r\n", -1);
for (iter = lines; *iter; iter++) {
if (!g_str_has_prefix (*iter, "nameserver"))
continue;
p = *iter + strlen ("nameserver");
if (!g_ascii_isspace (*p++))
continue;
/* Skip intermediate whitespace */
while (g_ascii_isspace (*p))
p++;
g_strchomp (p);
g_ptr_array_add (nameservers, g_strdup (p));
}
g_strfreev (lines);
g_free (contents);
return nameservers;
}
/**
* nm_utils_read_resolv_conf_dns_options():
* @rc_contents: contents of a resolv.conf; or %NULL to read /etc/resolv.conf
*
* Reads all dns options out of @rc_contents or /etc/resolv.conf and returns
* them.
*
* Returns: a #GPtrArray of 'char *' elements of each option
*/
GPtrArray *
nm_utils_read_resolv_conf_dns_options (const char *rc_contents)
{
GPtrArray *options = NULL;
char *contents = NULL;
char **lines, **line_iter;
char **tokens, **token_iter;
char *p;
if (rc_contents)
contents = g_strdup (rc_contents);
else {
if (!g_file_get_contents (_PATH_RESCONF, &contents, NULL, NULL))
return NULL;
}
options = g_ptr_array_new_full (3, g_free);
lines = g_strsplit_set (contents, "\r\n", -1);
for (line_iter = lines; *line_iter; line_iter++) {
if (!g_str_has_prefix (*line_iter, "options"))
continue;
p = *line_iter + strlen ("options");
if (!g_ascii_isspace (*p++))
continue;
tokens = g_strsplit (p, " ", 0);
for (token_iter = tokens; token_iter && *token_iter; token_iter++) {
g_strstrip (*token_iter);
if (!*token_iter[0])
continue;
g_ptr_array_add (options, g_strdup (*token_iter));
}
g_strfreev (tokens);
}
g_strfreev (lines);
g_free (contents);
return options;
}
static GHashTable *
check_property_in_hash (GHashTable *hash,
const char *s_name,
const char *p_name)
{
GHashTable *props;
props = g_hash_table_lookup (hash, s_name);
if ( !props
|| !g_hash_table_lookup (props, p_name)) {
return NULL;
}
return props;
}
static void
remove_from_hash (GHashTable *s_hash,
GHashTable *p_hash,
const char *s_name,
const char *p_name)
{
if (!p_hash)
return;
g_hash_table_remove (p_hash, p_name);
if (g_hash_table_size (p_hash) == 0)
g_hash_table_remove (s_hash, s_name);
}
static gboolean
check_ip6_method (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_ip6_method, *candidate_ip6_method;
NMSettingIPConfig *candidate_ip6;
gboolean allow = FALSE;
props = check_property_in_hash (settings,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_METHOD);
if (!props)
return TRUE;
/* If the generated connection is 'link-local' and the candidate is both 'auto'
* and may-fail=TRUE, then the candidate is OK to use. may-fail is included
* in the decision because if the candidate is 'auto' but may-fail=FALSE, then
* the connection could not possibly have been previously activated on the
* device if the device has no non-link-local IPv6 address.
*/
orig_ip6_method = nm_utils_get_ip_config_method (orig, NM_TYPE_SETTING_IP6_CONFIG);
candidate_ip6_method = nm_utils_get_ip_config_method (candidate, NM_TYPE_SETTING_IP6_CONFIG);
candidate_ip6 = nm_connection_get_setting_ip6_config (candidate);
if ( strcmp (orig_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_LINK_LOCAL) == 0
&& strcmp (candidate_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_AUTO) == 0
&& (!candidate_ip6 || nm_setting_ip_config_get_may_fail (candidate_ip6))) {
allow = TRUE;
}
/* If the generated connection method is 'link-local' or 'auto' and the candidate
* method is 'ignore' we can take the connection, because NM didn't simply take care
* of IPv6.
*/
if ( ( strcmp (orig_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_LINK_LOCAL) == 0
|| strcmp (orig_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_AUTO) == 0)
&& strcmp (candidate_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_IGNORE) == 0) {
allow = TRUE;
}
if (allow) {
remove_from_hash (settings, props,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_METHOD);
}
return allow;
}
static int
route_compare (NMIPRoute *route1, NMIPRoute *route2, gint64 default_metric)
{
gint64 r, metric1, metric2;
r = g_strcmp0 (nm_ip_route_get_dest (route1), nm_ip_route_get_dest (route2));
if (r)
return r;
r = nm_ip_route_get_prefix (route1) - nm_ip_route_get_prefix (route2);
if (r)
return r > 0 ? 1 : -1;
r = g_strcmp0 (nm_ip_route_get_next_hop (route1), nm_ip_route_get_next_hop (route2));
if (r)
return r;
metric1 = nm_ip_route_get_metric (route1) == -1 ? default_metric : nm_ip_route_get_metric (route1);
metric2 = nm_ip_route_get_metric (route2) == -1 ? default_metric : nm_ip_route_get_metric (route2);
r = metric1 - metric2;
if (r)
return r > 0 ? 1 : -1;
r = nm_ip_route_get_family (route1) - nm_ip_route_get_family (route2);
if (r)
return r > 0 ? 1 : -1;
return 0;
}
static int
route_ptr_compare (const void *a, const void *b)
{
return route_compare (*(NMIPRoute **) a, *(NMIPRoute **) b, -1);
}
static gboolean
check_ip_routes (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings,
gint64 default_metric,
gboolean v4)
{
gs_free NMIPRoute **routes1 = NULL, **routes2 = NULL;
NMSettingIPConfig *s_ip1, *s_ip2;
const char *s_name;
GHashTable *props;
guint i, num;
s_name = v4 ? NM_SETTING_IP4_CONFIG_SETTING_NAME :
NM_SETTING_IP6_CONFIG_SETTING_NAME;
props = check_property_in_hash (settings,
s_name,
NM_SETTING_IP_CONFIG_ROUTES);
if (!props)
return TRUE;
s_ip1 = (NMSettingIPConfig *) nm_connection_get_setting_by_name (orig, s_name);
s_ip2 = (NMSettingIPConfig *) nm_connection_get_setting_by_name (candidate, s_name);
if (!s_ip1 || !s_ip2)
return FALSE;
num = nm_setting_ip_config_get_num_routes (s_ip1);
if (num != nm_setting_ip_config_get_num_routes (s_ip2))
return FALSE;
routes1 = g_new (NMIPRoute *, num);
routes2 = g_new (NMIPRoute *, num);
for (i = 0; i < num; i++) {
routes1[i] = nm_setting_ip_config_get_route (s_ip1, i);
routes2[i] = nm_setting_ip_config_get_route (s_ip2, i);
}
qsort (routes1, num, sizeof (NMIPRoute *), route_ptr_compare);
qsort (routes2, num, sizeof (NMIPRoute *), route_ptr_compare);
for (i = 0; i < num; i++) {
if (route_compare (routes1[i], routes2[i], default_metric))
return FALSE;
}
remove_from_hash (settings, props, s_name, NM_SETTING_IP_CONFIG_ROUTES);
return TRUE;
}
static gboolean
check_ip4_method (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings,
gboolean device_has_carrier)
{
GHashTable *props;
const char *orig_ip4_method, *candidate_ip4_method;
NMSettingIPConfig *candidate_ip4;
props = check_property_in_hash (settings,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_METHOD);
if (!props)
return TRUE;
/* If the generated connection is 'disabled' (device had no IP addresses)
* but it has no carrier, that most likely means that IP addressing could
* not complete and thus no IP addresses were assigned. In that case, allow
* matching to the "auto" method.
*/
orig_ip4_method = nm_utils_get_ip_config_method (orig, NM_TYPE_SETTING_IP4_CONFIG);
candidate_ip4_method = nm_utils_get_ip_config_method (candidate, NM_TYPE_SETTING_IP4_CONFIG);
candidate_ip4 = nm_connection_get_setting_ip4_config (candidate);
if ( strcmp (orig_ip4_method, NM_SETTING_IP4_CONFIG_METHOD_DISABLED) == 0
&& strcmp (candidate_ip4_method, NM_SETTING_IP4_CONFIG_METHOD_AUTO) == 0
&& (!candidate_ip4 || nm_setting_ip_config_get_may_fail (candidate_ip4))
&& (device_has_carrier == FALSE)) {
remove_from_hash (settings, props,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_METHOD);
return TRUE;
}
return FALSE;
}
static gboolean
check_connection_interface_name (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_ifname, *cand_ifname;
NMSettingConnection *s_con_orig, *s_con_cand;
props = check_property_in_hash (settings,
NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME);
if (!props)
return TRUE;
/* If one of the interface names is NULL, we accept that connection */
s_con_orig = nm_connection_get_setting_connection (orig);
s_con_cand = nm_connection_get_setting_connection (candidate);
orig_ifname = nm_setting_connection_get_interface_name (s_con_orig);
cand_ifname = nm_setting_connection_get_interface_name (s_con_cand);
if (!orig_ifname || !cand_ifname) {
remove_from_hash (settings, props,
NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME);
return TRUE;
}
return FALSE;
}
static gboolean
check_connection_mac_address (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_mac = NULL, *cand_mac = NULL;
NMSettingWired *s_wired_orig, *s_wired_cand;
props = check_property_in_hash (settings,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_MAC_ADDRESS);
if (!props)
return TRUE;
/* If one of the MAC addresses is NULL, we accept that connection */
s_wired_orig = nm_connection_get_setting_wired (orig);
if (s_wired_orig)
orig_mac = nm_setting_wired_get_mac_address (s_wired_orig);
s_wired_cand = nm_connection_get_setting_wired (candidate);
if (s_wired_cand)
cand_mac = nm_setting_wired_get_mac_address (s_wired_cand);
if (!orig_mac || !cand_mac) {
remove_from_hash (settings, props,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_MAC_ADDRESS);
return TRUE;
}
return FALSE;
}
static gboolean
check_connection_cloned_mac_address (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_mac = NULL, *cand_mac = NULL;
NMSettingWired *s_wired_orig, *s_wired_cand;
props = check_property_in_hash (settings,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_CLONED_MAC_ADDRESS);
if (!props)
return TRUE;
/* If one of the MAC addresses is NULL, we accept that connection */
s_wired_orig = nm_connection_get_setting_wired (orig);
if (s_wired_orig)
orig_mac = nm_setting_wired_get_cloned_mac_address (s_wired_orig);
s_wired_cand = nm_connection_get_setting_wired (candidate);
if (s_wired_cand)
cand_mac = nm_setting_wired_get_cloned_mac_address (s_wired_cand);
if (!orig_mac || !cand_mac) {
remove_from_hash (settings, props,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_CLONED_MAC_ADDRESS);
return TRUE;
}
return FALSE;
}
static gboolean
check_connection_s390_props (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props1, *props2, *props3;
NMSettingWired *s_wired_orig, *s_wired_cand;
props1 = check_property_in_hash (settings,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_S390_SUBCHANNELS);
props2 = check_property_in_hash (settings,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_S390_NETTYPE);
props3 = check_property_in_hash (settings,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_S390_OPTIONS);
if (!props1 && !props2 && !props3)
return TRUE;
/* If the generated connection did not contain wired setting,
* allow it to match to a connection with a wired setting,
* but default (empty) s390-* properties */
s_wired_orig = nm_connection_get_setting_wired (orig);
s_wired_cand = nm_connection_get_setting_wired (candidate);
if (!s_wired_orig && s_wired_cand) {
const char * const *subchans = nm_setting_wired_get_s390_subchannels (s_wired_cand);
const char *nettype = nm_setting_wired_get_s390_nettype (s_wired_cand);
guint32 num_options = nm_setting_wired_get_num_s390_options (s_wired_cand);
if ((!subchans || !*subchans) && !nettype && num_options == 0) {
remove_from_hash (settings, props1,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_S390_SUBCHANNELS);
remove_from_hash (settings, props2,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_S390_NETTYPE);
remove_from_hash (settings, props3,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_S390_OPTIONS);
return TRUE;
}
}
return FALSE;
}
static NMConnection *
check_possible_match (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings,
gboolean device_has_carrier,
gint64 default_v4_metric,
gint64 default_v6_metric)
{
g_return_val_if_fail (settings != NULL, NULL);
if (!check_ip6_method (orig, candidate, settings))
return NULL;
if (!check_ip4_method (orig, candidate, settings, device_has_carrier))
return NULL;
if (!check_ip_routes (orig, candidate, settings, default_v4_metric, TRUE))
return NULL;
if (!check_ip_routes (orig, candidate, settings, default_v6_metric, FALSE))
return NULL;
if (!check_connection_interface_name (orig, candidate, settings))
return NULL;
if (!check_connection_mac_address (orig, candidate, settings))
return NULL;
if (!check_connection_cloned_mac_address (orig, candidate, settings))
return NULL;
if (!check_connection_s390_props (orig, candidate, settings))
return NULL;
if (g_hash_table_size (settings) == 0)
return candidate;
else
return NULL;
}
/**
* nm_utils_match_connection:
* @connections: a (optionally pre-sorted) list of connections from which to
* find a matching connection to @original based on "inferrable" properties
* @original: the #NMConnection to find a match for from @connections
* @device_has_carrier: pass %TRUE if the device that generated @original has
* a carrier, %FALSE if not
* @match_filter_func: a function to check whether each connection from @connections
* should be considered for matching. This function should return %TRUE if the
* connection should be considered, %FALSE if the connection should be ignored
* @match_compat_data: data pointer passed to @match_filter_func
*
* Checks each connection from @connections until a matching connection is found
* considering only setting properties marked with %NM_SETTING_PARAM_INFERRABLE
* and checking a few other characteristics like IPv6 method. If the caller
* desires some priority order of the connections, @connections should be
* sorted before calling this function.
*
* Returns: the best #NMConnection matching @original, or %NULL if no connection
* matches well enough.
*/
NMConnection *
nm_utils_match_connection (GSList *connections,
NMConnection *original,
gboolean device_has_carrier,
gint64 default_v4_metric,
gint64 default_v6_metric,
NMUtilsMatchFilterFunc match_filter_func,
gpointer match_filter_data)
{
NMConnection *best_match = NULL;
GSList *iter;
for (iter = connections; iter; iter = iter->next) {
NMConnection *candidate = NM_CONNECTION (iter->data);
GHashTable *diffs = NULL;
if (match_filter_func) {
if (!match_filter_func (candidate, match_filter_data))
continue;
}
if (!nm_connection_diff (original, candidate, NM_SETTING_COMPARE_FLAG_INFERRABLE, &diffs)) {
if (!best_match) {
best_match = check_possible_match (original, candidate, diffs, device_has_carrier,
default_v4_metric, default_v6_metric);
}
if (!best_match && nm_logging_enabled (LOGL_DEBUG, LOGD_CORE)) {
GString *diff_string;
GHashTableIter s_iter, p_iter;
gpointer setting_name, setting;
gpointer property_name, value;
diff_string = g_string_new (NULL);
g_hash_table_iter_init (&s_iter, diffs);
while (g_hash_table_iter_next (&s_iter, &setting_name, &setting)) {
g_hash_table_iter_init (&p_iter, setting);
while (g_hash_table_iter_next (&p_iter, &property_name, &value)) {
if (diff_string->len)
g_string_append (diff_string, ", ");
g_string_append_printf (diff_string, "%s.%s",
(char *) setting_name,
(char *) property_name);
}
}
nm_log_dbg (LOGD_CORE, "Connection '%s' differs from candidate '%s' in %s",
nm_connection_get_id (original),
nm_connection_get_id (candidate),
diff_string->str);
g_string_free (diff_string, TRUE);
}
g_hash_table_unref (diffs);
continue;
}
/* Exact match */
return candidate;
}
/* Best match (if any) */
return best_match;
}
int
nm_utils_cmp_connection_by_autoconnect_priority (NMConnection **a, NMConnection **b)
{
NMSettingConnection *a_s_con, *b_s_con;
gboolean a_ac, b_ac;
gint a_ap, b_ap;
a_s_con = nm_connection_get_setting_connection (*a);
b_s_con = nm_connection_get_setting_connection (*b);
a_ac = !!nm_setting_connection_get_autoconnect (a_s_con);
b_ac = !!nm_setting_connection_get_autoconnect (b_s_con);
if (a_ac != b_ac)
return ((int) b_ac) - ((int) a_ac);
if (!a_ac)
return 0;
a_ap = nm_setting_connection_get_autoconnect_priority (a_s_con);
b_ap = nm_setting_connection_get_autoconnect_priority (b_s_con);
if (a_ap != b_ap)
return (a_ap > b_ap) ? -1 : 1;
return 0;
}
/**************************************************************************/
static gint64 monotonic_timestamp_offset_sec;
static int monotonic_timestamp_clock_mode = 0;
static void
monotonic_timestamp_get (struct timespec *tp)
{
int clock_mode = 0;
int err = 0;
switch (monotonic_timestamp_clock_mode) {
case 0:
/* the clock is not yet initialized (first run) */
err = clock_gettime (CLOCK_BOOTTIME, tp);
if (err == -1 && errno == EINVAL) {
clock_mode = 2;
err = clock_gettime (CLOCK_MONOTONIC, tp);
} else
clock_mode = 1;
break;
case 1:
/* default, return CLOCK_BOOTTIME */
err = clock_gettime (CLOCK_BOOTTIME, tp);
break;
case 2:
/* fallback, return CLOCK_MONOTONIC. Kernels prior to 2.6.39
* don't support CLOCK_BOOTTIME. */
err = clock_gettime (CLOCK_MONOTONIC, tp);
break;
}
g_assert (err == 0); (void)err;
g_assert (tp->tv_nsec >= 0 && tp->tv_nsec < NM_UTILS_NS_PER_SECOND);
if (G_LIKELY (clock_mode == 0))
return;
/* Calculate an offset for the time stamp.
*
* We always want positive values, because then we can initialize
* a timestamp with 0 and be sure, that it will be less then any
* value nm_utils_get_monotonic_timestamp_*() might return.
* For this to be true also for nm_utils_get_monotonic_timestamp_s() at
* early boot, we have to shift the timestamp to start counting at
* least from 1 second onward.
*
* Another advantage of shifting is, that this way we make use of the whole 31 bit
* range of signed int, before the time stamp for nm_utils_get_monotonic_timestamp_s()
* wraps (~68 years).
**/
monotonic_timestamp_offset_sec = (- ((gint64) tp->tv_sec)) + 1;
monotonic_timestamp_clock_mode = clock_mode;
if (nm_logging_enabled (LOGL_DEBUG, LOGD_CORE)) {
time_t now = time (NULL);
struct tm tm;
char s[255];
strftime (s, sizeof (s), "%Y-%m-%d %H:%M:%S", localtime_r (&now, &tm));
nm_log_dbg (LOGD_CORE, "monotonic timestamp started counting 1.%09ld seconds ago with "
"an offset of %lld.0 seconds to %s (local time is %s)",
tp->tv_nsec, (long long) -monotonic_timestamp_offset_sec,
clock_mode == 1 ? "CLOCK_BOOTTIME" : "CLOCK_MONOTONIC", s);
}
}
/**
* nm_utils_get_monotonic_timestamp_ns:
*
* Returns: a monotonically increasing time stamp in nanoseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ns (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * NM_UTILS_NS_PER_SECOND +
tp.tv_nsec;
}
/**
* nm_utils_get_monotonic_timestamp_us:
*
* Returns: a monotonically increasing time stamp in microseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_us (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) G_USEC_PER_SEC) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/G_USEC_PER_SEC));
}
/**
* nm_utils_get_monotonic_timestamp_ms:
*
* Returns: a monotonically increasing time stamp in milliseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ms (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) 1000) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/1000));
}
/**
* nm_utils_get_monotonic_timestamp_s:
*
* Returns: nm_utils_get_monotonic_timestamp_ms() in seconds (throwing
* away sub second parts). The returned value will always be positive.
*
* This value wraps after roughly 68 years which should be fine for any
* practical purpose.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint32
nm_utils_get_monotonic_timestamp_s (void)
{
struct timespec tp = { 0 };
monotonic_timestamp_get (&tp);
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec);
}
typedef struct
{
const char *name;
NMSetting *setting;
NMSetting *diff_base_setting;
GHashTable *setting_diff;
} LogConnectionSettingData;
typedef struct
{
const char *item_name;
NMSettingDiffResult diff_result;
} LogConnectionSettingItem;
static gint
_log_connection_sort_hashes_fcn (gconstpointer a, gconstpointer b)
{
const LogConnectionSettingData *v1 = a;
const LogConnectionSettingData *v2 = b;
guint32 p1, p2;
NMSetting *s1, *s2;
s1 = v1->setting ? v1->setting : v1->diff_base_setting;
s2 = v2->setting ? v2->setting : v2->diff_base_setting;
g_assert (s1 && s2);
p1 = _nm_setting_get_setting_priority (s1);
p2 = _nm_setting_get_setting_priority (s2);
if (p1 != p2)
return p1 > p2 ? 1 : -1;
return strcmp (v1->name, v2->name);
}
static GArray *
_log_connection_sort_hashes (NMConnection *connection, NMConnection *diff_base, GHashTable *connection_diff)
{
GHashTableIter iter;
GArray *sorted_hashes;
LogConnectionSettingData setting_data;
sorted_hashes = g_array_sized_new (TRUE, FALSE, sizeof (LogConnectionSettingData), g_hash_table_size (connection_diff));
g_hash_table_iter_init (&iter, connection_diff);
while (g_hash_table_iter_next (&iter, (gpointer) &setting_data.name, (gpointer) &setting_data.setting_diff)) {
setting_data.setting = nm_connection_get_setting_by_name (connection, setting_data.name);
setting_data.diff_base_setting = diff_base ? nm_connection_get_setting_by_name (diff_base, setting_data.name) : NULL;
g_assert (setting_data.setting || setting_data.diff_base_setting);
g_array_append_val (sorted_hashes, setting_data);
}
g_array_sort (sorted_hashes, _log_connection_sort_hashes_fcn);
return sorted_hashes;
}
static gint
_log_connection_sort_names_fcn (gconstpointer a, gconstpointer b)
{
const LogConnectionSettingItem *v1 = a;
const LogConnectionSettingItem *v2 = b;
/* we want to first show the items, that disappeared, then the one that changed and
* then the ones that were added. */
if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) != (v2->diff_result & NM_SETTING_DIFF_RESULT_IN_A))
return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) ? -1 : 1;
if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) != (v2->diff_result & NM_SETTING_DIFF_RESULT_IN_B))
return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) ? 1 : -1;
return strcmp (v1->item_name, v2->item_name);
}
static char *
_log_connection_get_property (NMSetting *setting, const char *name)
{
GValue val = G_VALUE_INIT;
char *s;
g_return_val_if_fail (setting, NULL);
if ( !NM_IS_SETTING_VPN (setting)
&& nm_setting_get_secret_flags (setting, name, NULL, NULL))
return g_strdup ("****");
if (!_nm_setting_get_property (setting, name, &val))
g_return_val_if_reached (FALSE);
if (G_VALUE_HOLDS_STRING (&val)) {
const char *val_s;
val_s = g_value_get_string (&val);
if (!val_s) {
/* for NULL, we want to return the unquoted string "NULL". */
s = g_strdup ("NULL");
} else {
char *escaped = g_strescape (val_s, "'");
s = g_strdup_printf ("'%s'", escaped);
g_free (escaped);
}
} else {
s = g_strdup_value_contents (&val);
if (s == NULL)
s = g_strdup ("NULL");
else {
char *escaped = g_strescape (s, "'");
g_free (s);
s = escaped;
}
}
g_value_unset(&val);
return s;
}
static void
_log_connection_sort_names (LogConnectionSettingData *setting_data, GArray *sorted_names)
{
GHashTableIter iter;
LogConnectionSettingItem item;
gpointer p;
g_array_set_size (sorted_names, 0);
g_hash_table_iter_init (&iter, setting_data->setting_diff);
while (g_hash_table_iter_next (&iter, (gpointer) &item.item_name, &p)) {
item.diff_result = GPOINTER_TO_UINT (p);
g_array_append_val (sorted_names, item);
}
g_array_sort (sorted_names, _log_connection_sort_names_fcn);
}
void
nm_utils_log_connection_diff (NMConnection *connection, NMConnection *diff_base, guint32 level, guint64 domain, const char *name, const char *prefix)
{
GHashTable *connection_diff = NULL;
GArray *sorted_hashes;
GArray *sorted_names = NULL;
int i, j;
gboolean connection_diff_are_same;
gboolean print_header = TRUE;
gboolean print_setting_header;
GString *str1;
g_return_if_fail (NM_IS_CONNECTION (connection));
g_return_if_fail (!diff_base || (NM_IS_CONNECTION (diff_base) && diff_base != connection));
/* For VPN setting types, this is broken, because we cannot (generically) print the content of data/secrets. Bummer... */
if (!nm_logging_enabled (level, domain))
return;
if (!prefix)
prefix = "";
if (!name)
name = "";
connection_diff_are_same = nm_connection_diff (connection, diff_base, NM_SETTING_COMPARE_FLAG_EXACT | NM_SETTING_COMPARE_FLAG_DIFF_RESULT_NO_DEFAULT, &connection_diff);
if (connection_diff_are_same) {
if (diff_base)
nm_log (level, domain, "%sconnection '%s' (%p/%s and %p/%s): no difference", prefix, name, connection, G_OBJECT_TYPE_NAME (connection), diff_base, G_OBJECT_TYPE_NAME (diff_base));
else
nm_log (level, domain, "%sconnection '%s' (%p/%s): no properties set", prefix, name, connection, G_OBJECT_TYPE_NAME (connection));
g_assert (!connection_diff);
return;
}
/* FIXME: it doesn't nicely show the content of NMSettingVpn, becuase nm_connection_diff() does not
* expand the hash values. */
sorted_hashes = _log_connection_sort_hashes (connection, diff_base, connection_diff);
if (sorted_hashes->len <= 0)
goto out;
sorted_names = g_array_new (FALSE, FALSE, sizeof (LogConnectionSettingItem));
str1 = g_string_new (NULL);
for (i = 0; i < sorted_hashes->len; i++) {
LogConnectionSettingData *setting_data = &g_array_index (sorted_hashes, LogConnectionSettingData, i);
_log_connection_sort_names (setting_data, sorted_names);
print_setting_header = TRUE;
for (j = 0; j < sorted_names->len; j++) {
char *str_conn, *str_diff;
LogConnectionSettingItem *item = &g_array_index (sorted_names, LogConnectionSettingItem, j);
str_conn = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_A)
? _log_connection_get_property (setting_data->setting, item->item_name)
: NULL;
str_diff = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_B)
? _log_connection_get_property (setting_data->diff_base_setting, item->item_name)
: NULL;
if (print_header) {
GError *err_verify = NULL;
const char *path = nm_connection_get_path (connection);
if (diff_base) {
nm_log (level, domain, "%sconnection '%s' (%p/%s < %p/%s)%s%s%s:", prefix, name, connection, G_OBJECT_TYPE_NAME (connection), diff_base, G_OBJECT_TYPE_NAME (diff_base),
NM_PRINT_FMT_QUOTED (path, " [", path, "]", ""));
} else {
nm_log (level, domain, "%sconnection '%s' (%p/%s):%s%s%s", prefix, name, connection, G_OBJECT_TYPE_NAME (connection),
NM_PRINT_FMT_QUOTED (path, " [", path, "]", ""));
}
print_header = FALSE;
if (!nm_connection_verify (connection, &err_verify)) {
nm_log (level, domain, "%sconnection %p does not verify: %s", prefix, connection, err_verify->message);
g_clear_error (&err_verify);
}
}
#define _NM_LOG_ALIGN "-25"
if (print_setting_header) {
if (diff_base) {
if (setting_data->setting && setting_data->diff_base_setting)
g_string_printf (str1, "%p < %p", setting_data->setting, setting_data->diff_base_setting);
else if (setting_data->diff_base_setting)
g_string_printf (str1, "*missing* < %p", setting_data->diff_base_setting);
else
g_string_printf (str1, "%p < *missing*", setting_data->setting);
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s [ %s ]", prefix, setting_data->name, str1->str);
} else
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s [ %p ]", prefix, setting_data->name, setting_data->setting);
print_setting_header = FALSE;
}
g_string_printf (str1, "%s.%s", setting_data->name, item->item_name);
switch (item->diff_result & (NM_SETTING_DIFF_RESULT_IN_A | NM_SETTING_DIFF_RESULT_IN_B)) {
case NM_SETTING_DIFF_RESULT_IN_B:
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s < %s", prefix, str1->str, str_diff ? str_diff : "NULL");
break;
case NM_SETTING_DIFF_RESULT_IN_A:
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s = %s", prefix, str1->str, str_conn ? str_conn : "NULL");
break;
default:
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s = %s < %s", prefix, str1->str, str_conn ? str_conn : "NULL", str_diff ? str_diff : "NULL");
break;
#undef _NM_LOG_ALIGN
}
g_free (str_conn);
g_free (str_diff);
}
}
g_array_free (sorted_names, TRUE);
g_string_free (str1, TRUE);
out:
g_hash_table_destroy (connection_diff);
g_array_free (sorted_hashes, TRUE);
}
/**
* nm_utils_monotonic_timestamp_as_boottime:
* @timestamp: the monotonic-timestamp that should be converted into CLOCK_BOOTTIME.
* @timestamp_ns_per_tick: How many nano seconds make one unit of @timestamp? E.g. if
* @timestamp is in unit seconds, pass %NM_UTILS_NS_PER_SECOND; @timestamp in nano
* seconds, pass 1; @timestamp in milli seconds, pass %NM_UTILS_NS_PER_SECOND/1000; etc.
*
* Returns: the monotonic-timestamp as CLOCK_BOOTTIME, as returned by clock_gettime().
* The unit is the same as the passed in @timestamp basd on @timestamp_ns_per_tick.
* E.g. if you passed @timestamp in as seconds, it will return boottime in seconds.
* If @timestamp is a non-positive, it returns -1. Note that a (valid) monotonic-timestamp
* is always positive.
*
* On older kernels that don't support CLOCK_BOOTTIME, the returned time is instead CLOCK_MONOTONIC.
**/
gint64
nm_utils_monotonic_timestamp_as_boottime (gint64 timestamp, gint64 timestamp_ns_per_tick)
{
gint64 offset;
/* only support ns-per-tick being a multiple of 10. */
g_return_val_if_fail (timestamp_ns_per_tick == 1
|| (timestamp_ns_per_tick > 0 &&
timestamp_ns_per_tick <= NM_UTILS_NS_PER_SECOND &&
timestamp_ns_per_tick % 10 == 0),
-1);
/* Check that the timestamp is in a valid range. */
g_return_val_if_fail (timestamp >= 0, -1);
/* if the caller didn't yet ever fetch a monotonic-timestamp, he cannot pass any meaningful
* value (because he has no idea what these timestamps would be). That would be a bug. */
g_return_val_if_fail (monotonic_timestamp_clock_mode != 0, -1);
/* calculate the offset of monotonic-timestamp to boottime. offset_s is <= 1. */
offset = monotonic_timestamp_offset_sec * (NM_UTILS_NS_PER_SECOND / timestamp_ns_per_tick);
/* check for overflow. */
g_return_val_if_fail (offset > 0 || timestamp < G_MAXINT64 + offset, G_MAXINT64);
return timestamp - offset;
}
#define IPV6_PROPERTY_DIR "/proc/sys/net/ipv6/conf/"
#define IPV4_PROPERTY_DIR "/proc/sys/net/ipv4/conf/"
G_STATIC_ASSERT (sizeof (IPV4_PROPERTY_DIR) == sizeof (IPV6_PROPERTY_DIR));
static const char *
_get_property_path (const char *ifname,
const char *property,
gboolean ipv6)
{
static char path[sizeof (IPV6_PROPERTY_DIR) + IFNAMSIZ + 32];
int len;
ifname = ASSERT_VALID_PATH_COMPONENT (ifname);
property = ASSERT_VALID_PATH_COMPONENT (property);
len = g_snprintf (path,
sizeof (path),
"%s%s/%s",
ipv6 ? IPV6_PROPERTY_DIR : IPV4_PROPERTY_DIR,
ifname,
property);
g_assert (len < sizeof (path) - 1);
return path;
}
/**
* nm_utils_ip6_property_path:
* @ifname: an interface name
* @property: a property name
*
* Returns the path to IPv6 property @property on @ifname. Note that
* this uses a static buffer.
*/
const char *
nm_utils_ip6_property_path (const char *ifname, const char *property)
{
return _get_property_path (ifname, property, TRUE);
}
/**
* nm_utils_ip4_property_path:
* @ifname: an interface name
* @property: a property name
*
* Returns the path to IPv4 property @property on @ifname. Note that
* this uses a static buffer.
*/
const char *
nm_utils_ip4_property_path (const char *ifname, const char *property)
{
return _get_property_path (ifname, property, FALSE);
}
gboolean
nm_utils_is_valid_path_component (const char *name)
{
const char *n;
if (name == NULL || name[0] == '\0')
return FALSE;
if (name[0] == '.') {
if (name[1] == '\0')
return FALSE;
if (name[1] == '.' && name[2] == '\0')
return FALSE;
}
n = name;
do {
if (*n == '/')
return FALSE;
} while (*(++n) != '\0');
return TRUE;
}
const char *
ASSERT_VALID_PATH_COMPONENT (const char *name)
{
if (G_LIKELY (nm_utils_is_valid_path_component (name)))
return name;
nm_log_err (LOGD_CORE, "Failed asserting path component: %s%s%s",
NM_PRINT_FMT_QUOTED (name, "\"", name, "\"", "(null)"));
g_error ("FATAL: Failed asserting path component: %s%s%s",
NM_PRINT_FMT_QUOTED (name, "\"", name, "\"", "(null)"));
g_assert_not_reached ();
}
gboolean
nm_utils_is_specific_hostname (const char *name)
{
if (!name)
return FALSE;
if ( strcmp (name, "(none)")
&& strcmp (name, "localhost")
&& strcmp (name, "localhost6")
&& strcmp (name, "localhost.localdomain")
&& strcmp (name, "localhost6.localdomain6"))
return TRUE;
return FALSE;
}
/******************************************************************/
/* Returns the "u" (universal/local) bit value for a Modified EUI-64 */
static gboolean
get_gre_eui64_u_bit (guint32 addr)
{
static const struct {
guint32 mask;
guint32 result;
} items[] = {
{ 0xff000000 }, { 0x7f000000 }, /* IPv4 loopback */
{ 0xf0000000 }, { 0xe0000000 }, /* IPv4 multicast */
{ 0xffffff00 }, { 0xe0000000 }, /* IPv4 local multicast */
{ 0xffffffff }, { INADDR_BROADCAST }, /* limited broadcast */
{ 0xff000000 }, { 0x00000000 }, /* zero net */
{ 0xff000000 }, { 0x0a000000 }, /* private 10 (RFC3330) */
{ 0xfff00000 }, { 0xac100000 }, /* private 172 */
{ 0xffff0000 }, { 0xc0a80000 }, /* private 192 */
{ 0xffff0000 }, { 0xa9fe0000 }, /* IPv4 link-local */
{ 0xffffff00 }, { 0xc0586300 }, /* anycast 6-to-4 */
{ 0xffffff00 }, { 0xc0000200 }, /* test 192 */
{ 0xfffe0000 }, { 0xc6120000 }, /* test 198 */
};
guint i;
for (i = 0; i < G_N_ELEMENTS (items); i++) {
if ((addr & htonl (items[i].mask)) == htonl (items[i].result))
return 0x00; /* "local" scope */
}
return 0x02; /* "universal" scope */
}
/**
* nm_utils_get_ipv6_interface_identifier:
* @link_type: the hardware link type
* @hwaddr: the hardware address of the interface
* @hwaddr_len: the length (in bytes) of @hwaddr
* @dev_id: the device identifier, if any
* @out_iid: on success, filled with the interface identifier; on failure
* zeroed out
*
* Constructs an interface identifier in "Modified EUI-64" format which is
* suitable for constructing IPv6 addresses. Note that the identifier is
* not obscured in any way (eg, RFC3041).
*
* Returns: %TRUE if the interface identifier could be constructed, %FALSE if
* if could not be constructed.
*/
gboolean
nm_utils_get_ipv6_interface_identifier (NMLinkType link_type,
const guint8 *hwaddr,
guint hwaddr_len,
guint dev_id,
NMUtilsIPv6IfaceId *out_iid)
{
guint32 addr;
g_return_val_if_fail (hwaddr != NULL, FALSE);
g_return_val_if_fail (hwaddr_len > 0, FALSE);
g_return_val_if_fail (out_iid != NULL, FALSE);
out_iid->id = 0;
switch (link_type) {
case NM_LINK_TYPE_INFINIBAND:
/* Use the port GUID per http://tools.ietf.org/html/rfc4391#section-8,
* making sure to set the 'u' bit to 1. The GUID is the lower 64 bits
* of the IPoIB interface's hardware address.
*/
g_return_val_if_fail (hwaddr_len == INFINIBAND_ALEN, FALSE);
memcpy (out_iid->id_u8, hwaddr + INFINIBAND_ALEN - 8, 8);
out_iid->id_u8[0] |= 0x02;
return TRUE;
case NM_LINK_TYPE_GRE:
case NM_LINK_TYPE_GRETAP:
/* Hardware address is the network-endian IPv4 address */
g_return_val_if_fail (hwaddr_len == 4, FALSE);
addr = * (guint32 *) hwaddr;
out_iid->id_u8[0] = get_gre_eui64_u_bit (addr);
out_iid->id_u8[1] = 0x00;
out_iid->id_u8[2] = 0x5E;
out_iid->id_u8[3] = 0xFE;
memcpy (out_iid->id_u8 + 4, &addr, 4);
return TRUE;
default:
if (hwaddr_len == ETH_ALEN) {
/* Translate 48-bit MAC address to a 64-bit Modified EUI-64. See
* http://tools.ietf.org/html/rfc4291#appendix-A and the Linux
* kernel's net/ipv6/addrconf.c::ipv6_generate_eui64() function.
*/
out_iid->id_u8[0] = hwaddr[0];
out_iid->id_u8[1] = hwaddr[1];
out_iid->id_u8[2] = hwaddr[2];
if (dev_id) {
out_iid->id_u8[3] = (dev_id >> 8) & 0xff;
out_iid->id_u8[4] = dev_id & 0xff;
} else {
out_iid->id_u8[0] ^= 0x02;
out_iid->id_u8[3] = 0xff;
out_iid->id_u8[4] = 0xfe;
}
out_iid->id_u8[5] = hwaddr[3];
out_iid->id_u8[6] = hwaddr[4];
out_iid->id_u8[7] = hwaddr[5];
return TRUE;
}
break;
}
return FALSE;
}
void
nm_utils_ipv6_addr_set_interface_identfier (struct in6_addr *addr,
const NMUtilsIPv6IfaceId iid)
{
memcpy (addr->s6_addr + 8, &iid.id_u8, 8);
}
void
nm_utils_ipv6_interface_identfier_get_from_addr (NMUtilsIPv6IfaceId *iid,
const struct in6_addr *addr)
{
memcpy (iid, addr->s6_addr + 8, 8);
}
static gboolean
_set_stable_privacy (struct in6_addr *addr,
const char *ifname,
const char *uuid,
guint dad_counter,
gchar *secret_key,
gsize key_len,
GError **error)
{
GChecksum *sum;
guint8 digest[32];
guint32 tmp[2];
gsize len = sizeof (digest);
g_return_val_if_fail (key_len, FALSE);
/* Documentation suggests that this can fail.
* Maybe in case of a missing algorithm in crypto library? */
sum = g_checksum_new (G_CHECKSUM_SHA256);
if (!sum) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Can't create a SHA256 hash");
return FALSE;
}
key_len = MIN (key_len, G_MAXUINT32);
g_checksum_update (sum, addr->s6_addr, 8);
g_checksum_update (sum, (const guchar *) ifname, strlen (ifname) + 1);
if (!uuid)
uuid = "";
g_checksum_update (sum, (const guchar *) uuid, strlen (uuid) + 1);
tmp[0] = htonl (dad_counter);
tmp[1] = htonl (key_len);
g_checksum_update (sum, (const guchar *) tmp, sizeof (tmp));
g_checksum_update (sum, (const guchar *) secret_key, key_len);
g_checksum_get_digest (sum, digest, &len);
g_checksum_free (sum);
g_return_val_if_fail (len == 32, FALSE);
memcpy (addr->s6_addr + 8, &digest[0], 8);
return TRUE;
}
#define RFC7217_IDGEN_RETRIES 3
/**
* nm_utils_ipv6_addr_set_stable_privacy:
*
* Extend the address prefix with an interface identifier using the
* RFC 7217 Stable Privacy mechanism.
*
* Returns: %TRUE on success, %FALSE if the address could not be generated.
*/
gboolean
nm_utils_ipv6_addr_set_stable_privacy (struct in6_addr *addr,
const char *ifname,
const char *uuid,
guint dad_counter,
GError **error)
{
gchar *secret_key = NULL;
gsize key_len = 0;
gboolean success = FALSE;
if (dad_counter >= RFC7217_IDGEN_RETRIES) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Too many DAD collisions");
return FALSE;
}
/* Let's try to load a saved secret key first. */
if (g_file_get_contents (NMSTATEDIR "/secret_key", &secret_key, &key_len, NULL)) {
if (key_len < 16) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Key is too short to be usable");
key_len = 0;
}
} else {
int urandom = open ("/dev/urandom", O_RDONLY);
mode_t key_mask;
if (urandom == -1) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Can't open /dev/urandom: %s", strerror (errno));
return FALSE;
}
/* RFC7217 mandates the key SHOULD be at least 128 bits.
* Let's use twice as much. */
key_len = 32;
secret_key = g_malloc (key_len);
key_mask = umask (0077);
if (read (urandom, secret_key, key_len) == key_len) {
if (!g_file_set_contents (NMSTATEDIR "/secret_key", secret_key, key_len, error)) {
g_prefix_error (error, "Can't write " NMSTATEDIR "/secret_key");
key_len = 0;
}
} else {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
"Could not obtain a secret");
key_len = 0;
}
umask (key_mask);
close (urandom);
}
if (key_len) {
success = _set_stable_privacy (addr, ifname, uuid, dad_counter,
secret_key, key_len, error);
}
g_free (secret_key);
return success;
}
/**
* nm_utils_setpgid:
* @unused: unused
*
* This can be passed as a child setup function to the g_spawn*() family
* of functions, to ensure that the child is in its own process group
* (and thus, in some situations, will not be killed when NetworkManager
* is killed).
*/
void
nm_utils_setpgid (gpointer unused G_GNUC_UNUSED)
{
pid_t pid;
pid = getpid ();
setpgid (pid, pid);
}
/**
* nm_utils_g_value_set_object_path:
* @value: a #GValue, initialized to store an object path
* @object: (allow-none): an #NMExportedObject
*
* Sets @value to @object's object path. If @object is %NULL, or not
* exported, @value is set to "/".
*/
void
nm_utils_g_value_set_object_path (GValue *value, gpointer object)
{
g_return_if_fail (!object || NM_IS_EXPORTED_OBJECT (object));
if (object && nm_exported_object_is_exported (object))
g_value_set_string (value, nm_exported_object_get_path (object));
else
g_value_set_string (value, "/");
}
/**
* nm_utils_g_value_set_object_path_array:
* @value: a #GValue, initialized to store an object path
* @objects: a #GSList of #NMExportedObjects
* @filter_func: (allow-none): function to call on each object in @objects
* @user_data: data to pass to @filter_func
*
* Sets @value to an array of object paths of the objects in @objects.
*/
void
nm_utils_g_value_set_object_path_array (GValue *value,
GSList *objects,
NMUtilsObjectFunc filter_func,
gpointer user_data)
{
char **paths;
guint i;
GSList *iter;
paths = g_new (char *, g_slist_length (objects) + 1);
for (i = 0, iter = objects; iter; iter = iter->next) {
NMExportedObject *object = iter->data;
const char *path;
path = nm_exported_object_get_path (object);
if (!path)
continue;
if (filter_func && !filter_func ((GObject *) object, user_data))
continue;
paths[i++] = g_strdup (path);
}
paths[i] = NULL;
g_value_take_boxed (value, paths);
}
/**
* nm_utils_g_value_set_strv:
* @value: a #GValue, initialized to store a #G_TYPE_STRV
* @strings: a #GPtrArray of strings
*
* Converts @strings to a #GStrv and stores it in @value.
*/
void
nm_utils_g_value_set_strv (GValue *value, GPtrArray *strings)
{
char **strv;
int i;
strv = g_new (char *, strings->len + 1);
for (i = 0; i < strings->len; i++)
strv[i] = g_strdup (strings->pdata[i]);
strv[i] = NULL;
g_value_take_boxed (value, strv);
}