Files
NetworkManager/src/NetworkManagerUtils.c
Thomas Haller ff145486d1 core: add nm_ipX_config_get_direct_route_for_host() functions
add two functions nm_ip4_config_get_direct_route_for_host()
and nm_ip6_config_get_direct_route_for_host() to check if we have
a direct (non-gw) route to a certain host.

Signed-off-by: Thomas Haller <thaller@redhat.com>

https://bugzilla.gnome.org/show_bug.cgi?id=738590
2014-10-31 18:35:31 +01:00

2487 lines
76 KiB
C

/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/* NetworkManager -- Network link manager
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Copyright 2004 - 2014 Red Hat, Inc.
* Copyright 2005 - 2008 Novell, Inc.
*/
#include "config.h"
#include <glib.h>
#include <glib/gi18n.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <resolv.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/if.h>
#include <linux/if_infiniband.h>
#include "NetworkManagerUtils.h"
#include "nm-utils.h"
#include "nm-core-internal.h"
#include "nm-logging.h"
#include "nm-device.h"
#include "nm-setting-connection.h"
#include "nm-setting-ip4-config.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"
#include "nm-auth-utils.h"
#include "nm-posix-signals.h"
#include "nm-dbus-glib-types.h"
/*
* Some toolchains (E.G. uClibc 0.9.33 and earlier) don't export
* CLOCK_BOOTTIME even though the kernel supports it, so provide a
* local definition
*/
#ifndef CLOCK_BOOTTIME
#define CLOCK_BOOTTIME 7
#endif
/*
* nm_ethernet_address_is_valid:
* @addr: pointer to a binary or ASCII Ethernet address
* @len: length of @addr, or -1 if @addr is ASCII
*
* Compares an Ethernet address against known invalid addresses.
* Returns: %TRUE if @addr is a valid Ethernet address, %FALSE if it is not.
*/
gboolean
nm_ethernet_address_is_valid (gconstpointer addr, gssize len)
{
guint8 invalid_addr1[ETH_ALEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
guint8 invalid_addr2[ETH_ALEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
guint8 invalid_addr3[ETH_ALEN] = {0x44, 0x44, 0x44, 0x44, 0x44, 0x44};
guint8 invalid_addr4[ETH_ALEN] = {0x00, 0x30, 0xb4, 0x00, 0x00, 0x00}; /* prism54 dummy MAC */
guchar first_octet;
g_return_val_if_fail (addr != NULL, FALSE);
g_return_val_if_fail (len == ETH_ALEN || len == -1, FALSE);
/* Compare the AP address the card has with invalid ethernet MAC addresses. */
if (nm_utils_hwaddr_matches (addr, len, invalid_addr1, ETH_ALEN))
return FALSE;
if (nm_utils_hwaddr_matches (addr, len, invalid_addr2, ETH_ALEN))
return FALSE;
if (nm_utils_hwaddr_matches (addr, len, invalid_addr3, ETH_ALEN))
return FALSE;
if (nm_utils_hwaddr_matches (addr, len, invalid_addr4, ETH_ALEN))
return FALSE;
/* Check for multicast address */
if (len == -1)
first_octet = strtoul (addr, NULL, 16);
else
first_octet = ((guint8 *)addr)[0];
if (first_octet & 0x01)
return FALSE;
return TRUE;
}
/* nm_utils_ip4_address_clear_host_address:
* @addr: source ip6 address
* @plen: prefix length of network
*
* returns: the input address, with the host address set to 0.
*/
in_addr_t
nm_utils_ip4_address_clear_host_address (in_addr_t addr, guint8 plen)
{
return addr & nm_utils_ip4_prefix_to_netmask (plen);
}
/* nm_utils_ip6_address_clear_host_address:
* @dst: destination output buffer, will contain the network part of the @src address
* @src: source ip6 address
* @plen: prefix length of network
*
* Note: this function is self assignment safe, to update @src inplace, set both
* @dst and @src to the same destination.
*/
const struct in6_addr *
nm_utils_ip6_address_clear_host_address (struct in6_addr *dst, const struct in6_addr *src, guint8 plen)
{
g_return_val_if_fail (plen <= 128, NULL);
g_return_val_if_fail (src, NULL);
g_return_val_if_fail (dst, NULL);
if (plen < 128) {
guint nbytes = plen / 8;
guint nbits = plen % 8;
if (nbytes && dst != src)
memcpy (dst, src, nbytes);
if (nbits) {
dst->s6_addr[nbytes] = (src->s6_addr[nbytes] & (0xFF << (8 - nbits)));
nbytes++;
}
if (nbytes <= 15)
memset (&dst->s6_addr[nbytes], 0, 16 - nbytes);
} else if (src != dst)
*dst = *src;
return dst;
}
int
nm_spawn_process (const char *args)
{
gint num_args;
char **argv = NULL;
int status = -1;
GError *error = NULL;
g_return_val_if_fail (args != NULL, -1);
if (!g_shell_parse_argv (args, &num_args, &argv, &error)) {
nm_log_warn (LOGD_CORE, "could not parse arguments for '%s': %s", args, error->message);
g_error_free (error);
return -1;
}
if (!g_spawn_sync ("/", argv, NULL, 0, nm_unblock_posix_signals, NULL, NULL, NULL, &status, &error)) {
nm_log_warn (LOGD_CORE, "could not spawn process '%s': %s", args, error->message);
g_error_free (error);
}
g_strfreev (argv);
return status;
}
/**
* nm_utils_get_start_time_for_pid:
* @pid: the process identifier
*
* Originally copied from polkit source (src/polkit/polkitunixprocess.c)
* and adjusted.
*
* Returns: the timestamp when the process started (by parsing /proc/$PID/stat).
* If an error occurs (e.g. the process does not exist), 0 is returned.
*
* The returned start time counts since boot, in the unit HZ (with HZ usually being (1/100) seconds)
**/
guint64
nm_utils_get_start_time_for_pid (pid_t pid)
{
guint64 start_time;
gchar *filename;
gchar *contents;
size_t length;
gchar **tokens;
guint num_tokens;
gchar *p;
gchar *endp;
start_time = 0;
contents = NULL;
g_return_val_if_fail (pid > 0, 0);
filename = g_strdup_printf ("/proc/%"G_GUINT64_FORMAT"/stat", (guint64) pid);
if (!g_file_get_contents (filename, &contents, &length, NULL))
goto out;
/* start time is the token at index 19 after the '(process name)' entry - since only this
* field can contain the ')' character, search backwards for this to avoid malicious
* processes trying to fool us
*/
p = strrchr (contents, ')');
if (p == NULL)
goto out;
p += 2; /* skip ') ' */
if (p - contents >= (int) length)
goto out;
tokens = g_strsplit (p, " ", 0);
num_tokens = g_strv_length (tokens);
if (num_tokens < 20)
goto out;
start_time = strtoull (tokens[19], &endp, 10);
if (endp == tokens[19])
goto out;
g_strfreev (tokens);
out:
g_free (filename);
g_free (contents);
return start_time;
}
/******************************************************************************************/
typedef struct {
pid_t pid;
guint64 log_domain;
union {
struct {
gint64 wait_start_us;
guint source_timeout_kill_id;
} async;
struct {
gboolean success;
int child_status;
} sync;
};
NMUtilsKillChildAsyncCb callback;
void *user_data;
char log_name[1]; /* variable-length object, must be last element!! */
} KillChildAsyncData;
#define LOG_NAME_FMT "kill child process '%s' (%ld)"
#define LOG_NAME_PROCESS_FMT "kill process '%s' (%ld)"
#define LOG_NAME_ARGS log_name,(long)pid
static KillChildAsyncData *
_kc_async_data_alloc (pid_t pid, guint64 log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data)
{
KillChildAsyncData *data;
size_t log_name_len;
/* append the name at the end of our KillChildAsyncData. */
log_name_len = strlen (LOG_NAME_FMT) + 20 + strlen (log_name);
data = g_malloc (sizeof (KillChildAsyncData) - 1 + log_name_len);
g_snprintf (data->log_name, log_name_len, LOG_NAME_FMT, LOG_NAME_ARGS);
data->pid = pid;
data->user_data = user_data;
data->callback = callback;
data->log_domain = log_domain;
return data;
}
#define KC_EXIT_TO_STRING_BUF_SIZE 128
static const char *
_kc_exit_to_string (char *buf, int exit)
#define _kc_exit_to_string(buf, exit) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_EXIT_TO_STRING_BUF_SIZE && sizeof ((buf)[0]) == 1), _kc_exit_to_string (buf, exit) )
{
if (WIFEXITED (exit))
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "normally with status %d", WEXITSTATUS (exit));
else if (WIFSIGNALED (exit))
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "by signal %d", WTERMSIG (exit));
else
g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "with unexpected status %d", exit);
return buf;
}
static const char *
_kc_signal_to_string (int sig)
{
switch (sig) {
case 0: return "no signal (0)";
case SIGKILL: return "SIGKILL (" G_STRINGIFY (SIGKILL) ")";
case SIGTERM: return "SIGTERM (" G_STRINGIFY (SIGTERM) ")";
default:
return "Unexpected signal";
}
}
#define KC_WAITED_TO_STRING 100
static const char *
_kc_waited_to_string (char *buf, gint64 wait_start_us)
#define _kc_waited_to_string(buf, wait_start_us) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_WAITED_TO_STRING && sizeof ((buf)[0]) == 1), _kc_waited_to_string (buf, wait_start_us) )
{
g_snprintf (buf, KC_WAITED_TO_STRING, " (%ld usec elapsed)", (long) (nm_utils_get_monotonic_timestamp_us () - wait_start_us));
return buf;
}
static void
_kc_cb_watch_child (GPid pid, gint status, gpointer user_data)
{
KillChildAsyncData *data = user_data;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE], buf_wait[KC_WAITED_TO_STRING];
if (data->async.source_timeout_kill_id)
g_source_remove (data->async.source_timeout_kill_id);
nm_log_dbg (data->log_domain, "%s: terminated %s%s",
data->log_name, _kc_exit_to_string (buf_exit, status),
_kc_waited_to_string (buf_wait, data->async.wait_start_us));
if (data->callback)
data->callback (pid, TRUE, status, data->user_data);
g_free (data);
}
static gboolean
_kc_cb_timeout_grace_period (void *user_data)
{
KillChildAsyncData *data = user_data;
int ret, errsv;
data->async.source_timeout_kill_id = 0;
if ((ret = kill (data->pid, SIGKILL)) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | data->log_domain, "%s: kill(SIGKILL) returned unexpected return value %d: (%s, %d)",
data->log_name, ret, strerror (errsv), errsv);
}
} else {
nm_log_dbg (data->log_domain, "%s: process not terminated after %ld usec. Sending SIGKILL signal",
data->log_name, (long) (nm_utils_get_monotonic_timestamp_us () - data->async.wait_start_us));
}
return G_SOURCE_REMOVE;
}
static gboolean
_kc_invoke_callback_idle (gpointer user_data)
{
KillChildAsyncData *data = user_data;
if (data->sync.success) {
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
nm_log_dbg (data->log_domain, "%s: invoke callback: terminated %s",
data->log_name, _kc_exit_to_string (buf_exit, data->sync.child_status));
} else
nm_log_dbg (data->log_domain, "%s: invoke callback: killing child failed", data->log_name);
data->callback (data->pid, data->sync.success, data->sync.child_status, data->user_data);
g_free (data);
return G_SOURCE_REMOVE;
}
static void
_kc_invoke_callback (pid_t pid, guint64 log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data, gboolean success, int child_status)
{
KillChildAsyncData *data;
if (!callback)
return;
data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
data->sync.success = success;
data->sync.child_status = child_status;
g_idle_add (_kc_invoke_callback_idle, data);
}
/* nm_utils_kill_child_async:
* @pid: the process id of the process to kill
* @sig: signal to send initially. Set to 0 to send not signal.
* @log_domain: the logging domain used for logging (LOGD_NONE to suppress logging)
* @log_name: for logging, the name of the processes to kill
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter is ignored.
* @callback: (allow-none): callback after the child terminated. This function will always
* be invoked asynchronously.
* @user_data: passed on to callback
*
* Uses g_child_watch_add(), so note the glib comment: if you obtain pid from g_spawn_async() or
* g_spawn_async_with_pipes() you will need to pass %G_SPAWN_DO_NOT_REAP_CHILD as flag to the spawn
* function for the child watching to work.
* Also note, that you must g_source_remove() any other child watchers for @pid because glib
* supports only one watcher per child.
**/
void
nm_utils_kill_child_async (pid_t pid, int sig, guint64 log_domain,
const char *log_name, guint32 wait_before_kill_msec,
NMUtilsKillChildAsyncCb callback, void *user_data)
{
int status = 0, errsv;
pid_t ret;
KillChildAsyncData *data;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
g_return_if_fail (pid > 0);
g_return_if_fail (log_name != NULL);
/* let's see if the child already terminated... */
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
return;
} else if (ret != 0) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
LOG_NAME_ARGS, strerror (errsv), errsv);
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
return;
}
}
/* send the first signal. */
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error sending %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
return;
}
/* let's try again with waitpid, probably there was a race... */
ret = waitpid (pid, &status, 0);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
} else {
errsv = errno;
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
}
return;
}
data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
data->async.wait_start_us = nm_utils_get_monotonic_timestamp_us ();
if (sig != SIGKILL && wait_before_kill_msec > 0) {
data->async.source_timeout_kill_id = g_timeout_add (wait_before_kill_msec, _kc_cb_timeout_grace_period, data);
nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s (send SIGKILL in %ld milliseconds)...",
data->log_name, _kc_signal_to_string (sig), (long) wait_before_kill_msec);
} else {
data->async.source_timeout_kill_id = 0;
nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s...",
data->log_name, _kc_signal_to_string (sig));
}
g_child_watch_add (pid, _kc_cb_watch_child, data);
}
/* nm_utils_kill_child_sync:
* @pid: process id to kill
* @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
* second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
* @log_domain: log debug information for this domain. Errors and warnings are logged both
* as %LOGD_CORE and @log_domain.
* @log_name: name of the process to kill for logging.
* @child_status: (out) (allow-none): return the exit status of the child, if no error occured.
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has not effect.
* @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
* Set to zero, to use the default (meaning 20 wakeups per seconds).
*
* Kill a child process synchronously and wait. The function first checks if the child already terminated
* and if it did, return the exit status. Otherwise send one @sig signal. @sig will always be
* sent unless the child already exited. If the child does not exit within @wait_before_kill_msec milliseconds,
* the function will send %SIGKILL and waits for the child indefinitly. If @wait_before_kill_msec is zero, no
* %SIGKILL signal will be sent.
**/
gboolean
nm_utils_kill_child_sync (pid_t pid, int sig, guint64 log_domain, const char *log_name,
int *child_status, guint32 wait_before_kill_msec,
guint32 sleep_duration_msec)
{
int status = 0, errsv;
pid_t ret;
gboolean success = FALSE;
gboolean was_waiting = FALSE, send_kill = FALSE;
char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
char buf_wait[KC_WAITED_TO_STRING];
gint64 wait_start_us;
g_return_val_if_fail (pid > 0, FALSE);
g_return_val_if_fail (log_name != NULL, FALSE);
/* check if the child process already terminated... */
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
success = TRUE;
goto out;
} else if (ret != 0) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
LOG_NAME_ARGS, strerror (errsv), errsv);
goto out;
}
}
/* send first signal @sig */
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
} else {
/* let's try again with waitpid, probably there was a race... */
ret = waitpid (pid, &status, 0);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
success = TRUE;
} else {
errsv = errno;
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
}
}
goto out;
}
wait_start_us = nm_utils_get_monotonic_timestamp_us ();
/* wait for the process to terminated... */
if (sig != SIGKILL) {
gint64 wait_until, now;
gulong sleep_time, sleep_duration_usec;
int loop_count = 0;
sleep_duration_usec = (sleep_duration_msec <= 0) ? (G_USEC_PER_SEC / 20) : MIN (G_MAXULONG, ((gint64) sleep_duration_msec) * 1000L);
wait_until = wait_before_kill_msec <= 0 ? 0 : wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
while (TRUE) {
ret = waitpid (pid, &status, WNOHANG);
if (ret > 0) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s, process %ld exited %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), (long) ret, _kc_exit_to_string (buf_exit, status),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
success = TRUE;
goto out;
}
if (ret == -1) {
errsv = errno;
/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
if (errsv != ECHILD) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s, waitpid failed with %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
goto out;
}
}
if (!wait_until)
break;
now = nm_utils_get_monotonic_timestamp_us ();
if (now >= wait_until)
break;
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting up to %ld milliseconds for process to terminate normally after sending %s...",
LOG_NAME_ARGS, (long) MAX (wait_before_kill_msec, 0), _kc_signal_to_string (sig));
was_waiting = TRUE;
}
sleep_time = MIN (wait_until - now, sleep_duration_usec);
if (loop_count < 20) {
/* At the beginning we expect the process to die fast.
* Limit the sleep time, the limit doubles with every iteration. */
sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
loop_count++;
}
g_usleep (sleep_time);
}
/* send SIGKILL, if called with @wait_before_kill_msec > 0 */
if (wait_until) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": sending SIGKILL...", LOG_NAME_ARGS);
send_kill = TRUE;
if (kill (pid, SIGKILL) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send SIGKILL (after sending %s), %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
goto out;
}
}
}
}
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting for process to terminate after sending %s%s...",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "");
}
/* block until the child terminates. */
while ((ret = waitpid (pid, &status, 0)) <= 0) {
errsv = errno;
if (errsv != EINTR) {
nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s%s, waitpid failed with %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", strerror (errsv), errsv,
_kc_waited_to_string (buf_wait, wait_start_us));
goto out;
}
}
nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s%s, process %ld exited %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", (long) ret,
_kc_exit_to_string (buf_exit, status), _kc_waited_to_string (buf_wait, wait_start_us));
success = TRUE;
out:
if (child_status)
*child_status = success ? status : -1;
return success;
}
/* nm_utils_kill_process_sync:
* @pid: process id to kill
* @start_time: the start time of the process to kill (as obtained by nm_utils_get_start_time_for_pid()).
* This is an optional argument, to avoid (somewhat) killing the wrong process as @pid
* might get recycled. You can pass 0, to not provide this parameter.
* @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
* second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
* @log_domain: log debug information for this domain. Errors and warnings are logged both
* as %LOGD_CORE and @log_domain.
* @log_name: name of the process to kill for logging.
* @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
* to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has no effect.
* @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
* Set to zero, to use the default (meaning 20 wakeups per seconds).
*
* Kill a non-child process synchronously and wait. This function will not return before the
* process with PID @pid is gone.
**/
void
nm_utils_kill_process_sync (pid_t pid, guint64 start_time, int sig, guint64 log_domain,
const char *log_name, guint32 wait_before_kill_msec,
guint32 sleep_duration_msec)
{
int errsv;
guint64 start_time0;
gint64 wait_until, now, wait_start_us;
gulong sleep_time, sleep_duration_usec;
int loop_count = 0;
gboolean was_waiting = FALSE;
char buf_wait[KC_WAITED_TO_STRING];
g_return_if_fail (pid > 0);
g_return_if_fail (log_name != NULL);
g_return_if_fail (wait_before_kill_msec > 0);
start_time0 = nm_utils_get_start_time_for_pid (pid);
if (start_time0 == 0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it seems already gone",
LOG_NAME_ARGS, (long int) pid);
return;
}
if (start_time != 0 && start_time != start_time0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": don't kill process %ld because the start_time is unexpectedly %lu instead of %ld",
LOG_NAME_ARGS, (long int) pid, (long unsigned) start_time0, (long unsigned) start_time);
return;
}
if (kill (pid, sig) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv == ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s because process seems gone",
LOG_NAME_ARGS, _kc_signal_to_string (sig));
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s: %s (%d)",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
}
return;
}
/* wait for the process to terminated... */
wait_start_us = nm_utils_get_monotonic_timestamp_us ();
sleep_duration_usec = (sleep_duration_msec == 0) ? (G_USEC_PER_SEC / 20) : MIN (G_MAXULONG, ((gulong) sleep_duration_msec) * 1000UL);
wait_until = wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
while (TRUE) {
start_time = nm_utils_get_start_time_for_pid (pid);
if (start_time != start_time0) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone after sending signal %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
return;
}
if (kill (pid, 0) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv == ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie after sending signal %s%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig),
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to kill(%ld, 0): %s (%d)%s",
LOG_NAME_ARGS, (long int) pid, strerror (errsv), errsv,
was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
}
return;
}
sleep_time = sleep_duration_usec;
if (wait_until != 0) {
now = nm_utils_get_monotonic_timestamp_us ();
if (sig != SIGKILL && now >= wait_until) {
/* Still not dead. SIGKILL now... */
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
if (kill (pid, SIGKILL) != 0) {
errsv = errno;
/* ESRCH means, process does not exist or is already a zombie. */
if (errsv != ESRCH) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie%s",
LOG_NAME_ARGS, _kc_waited_to_string (buf_wait, wait_start_us));
} else {
nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send SIGKILL (after sending %s), %s (%d)%s",
LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
_kc_waited_to_string (buf_wait, wait_start_us));
}
return;
}
sig = SIGKILL;
was_waiting = TRUE;
wait_until = 0;
loop_count = 0; /* reset the loop_count. Now we really expect the process to die quickly. */
} else {
if (!was_waiting) {
nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear after sending %s...",
LOG_NAME_ARGS, (long) wait_before_kill_msec, _kc_signal_to_string (sig));
was_waiting = TRUE;
}
sleep_time = MIN (wait_until - now, sleep_duration_usec);
}
}
if (loop_count < 20) {
/* At the beginning we expect the process to die fast.
* Limit the sleep time, the limit doubles with every iteration. */
sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
loop_count++;
}
g_usleep (sleep_time);
}
}
#undef LOG_NAME_FMT
#undef LOG_NAME_PROCESS_FMT
#undef LOG_NAME_ARGS
/**
* nm_utils_find_helper:
* @progname: the helper program name, like "iptables"
* @try_first: a custom path to try first before searching
* @error: on failure, a "not found" error using @error_domain and @error_code
*
* Searches for the @progname in common system paths.
*
* Returns: the full path to the helper, if found, or %NULL if not found.
*/
const char *
nm_utils_find_helper (const char *progname,
const char *try_first,
GError **error)
{
static const char *paths[] = {
PREFIX "/sbin/",
PREFIX "/bin/",
"/sbin/",
"/usr/sbin/",
"/usr/local/sbin/",
"/usr/bin/",
"/usr/local/bin/",
};
guint i;
GString *tmp;
const char *ret;
if (error)
g_return_val_if_fail (*error == NULL, NULL);
if (try_first && try_first[0] && g_file_test (try_first, G_FILE_TEST_EXISTS))
return g_intern_string (try_first);
tmp = g_string_sized_new (50);
for (i = 0; i < G_N_ELEMENTS (paths); i++) {
g_string_append_printf (tmp, "%s%s", paths[i], progname);
if (g_file_test (tmp->str, G_FILE_TEST_EXISTS)) {
ret = g_intern_string (tmp->str);
g_string_free (tmp, TRUE);
return ret;
}
g_string_set_size (tmp, 0);
}
g_string_free (tmp, TRUE);
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_FOUND, "Could not find %s binary", progname);
return NULL;
}
/******************************************************************************************/
gboolean
nm_match_spec_string (const GSList *specs, const char *match)
{
const GSList *iter;
for (iter = specs; iter; iter = g_slist_next (iter)) {
if (!g_ascii_strcasecmp ((const char *) iter->data, match))
return TRUE;
}
return FALSE;
}
gboolean
nm_match_spec_hwaddr (const GSList *specs, const char *hwaddr)
{
const GSList *iter;
g_return_val_if_fail (hwaddr != NULL, FALSE);
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec_str = iter->data;
if ( !g_ascii_strncasecmp (spec_str, "mac:", 4)
&& nm_utils_hwaddr_matches (spec_str + 4, -1, hwaddr, -1))
return TRUE;
if (nm_utils_hwaddr_matches (spec_str, -1, hwaddr, -1))
return TRUE;
}
return FALSE;
}
gboolean
nm_match_spec_interface_name (const GSList *specs, const char *interface_name)
{
char *iface_match;
gboolean matched;
g_return_val_if_fail (interface_name != NULL, FALSE);
if (nm_match_spec_string (specs, interface_name))
return TRUE;
iface_match = g_strdup_printf ("interface-name:%s", interface_name);
matched = nm_match_spec_string (specs, iface_match);
g_free (iface_match);
return matched;
}
#define BUFSIZE 10
static gboolean
parse_subchannels (const char *subchannels, guint32 *a, guint32 *b, guint32 *c)
{
long unsigned int tmp;
char buf[BUFSIZE + 1];
const char *p = subchannels;
int i = 0;
char *pa = NULL, *pb = NULL, *pc = NULL;
g_return_val_if_fail (subchannels != NULL, FALSE);
g_return_val_if_fail (a != NULL, FALSE);
g_return_val_if_fail (*a == 0, FALSE);
g_return_val_if_fail (b != NULL, FALSE);
g_return_val_if_fail (*b == 0, FALSE);
g_return_val_if_fail (c != NULL, FALSE);
g_return_val_if_fail (*c == 0, FALSE);
/* sanity check */
if (!g_ascii_isxdigit (subchannels[0]))
return FALSE;
/* Get the first channel */
while (*p && (*p != ',')) {
if (!g_ascii_isxdigit (*p) && (*p != '.'))
return FALSE; /* Invalid chars */
if (i >= BUFSIZE)
return FALSE; /* Too long to be a subchannel */
buf[i++] = *p++;
}
buf[i] = '\0';
/* and grab each of its elements, there should be 3 */
pa = &buf[0];
pb = strchr (buf, '.');
if (pb)
pc = strchr (pb + 1, '.');
if (!pa || !pb || !pc)
return FALSE;
/* Split the string */
*pb++ = '\0';
*pc++ = '\0';
errno = 0;
tmp = strtoul (pa, NULL, 16);
if (errno)
return FALSE;
*a = (guint32) tmp;
errno = 0;
tmp = strtoul (pb, NULL, 16);
if (errno)
return FALSE;
*b = (guint32) tmp;
errno = 0;
tmp = strtoul (pc, NULL, 16);
if (errno)
return FALSE;
*c = (guint32) tmp;
return TRUE;
}
#define SUBCHAN_TAG "s390-subchannels:"
gboolean
nm_match_spec_s390_subchannels (const GSList *specs, const char *subchannels)
{
const GSList *iter;
guint32 a = 0, b = 0, c = 0;
guint32 spec_a = 0, spec_b = 0, spec_c = 0;
g_return_val_if_fail (subchannels != NULL, FALSE);
if (!parse_subchannels (subchannels, &a, &b, &c))
return FALSE;
for (iter = specs; iter; iter = g_slist_next (iter)) {
const char *spec = iter->data;
if (!strncmp (spec, SUBCHAN_TAG, strlen (SUBCHAN_TAG))) {
spec += strlen (SUBCHAN_TAG);
if (parse_subchannels (spec, &spec_a, &spec_b, &spec_c)) {
if (a == spec_a && b == spec_b && c == spec_c)
return TRUE;
}
}
}
return FALSE;
}
const char *
nm_utils_get_shared_wifi_permission (NMConnection *connection)
{
NMSettingWireless *s_wifi;
NMSettingWirelessSecurity *s_wsec;
const char *method = NULL;
method = nm_utils_get_ip_config_method (connection, NM_TYPE_SETTING_IP4_CONFIG);
if (strcmp (method, NM_SETTING_IP4_CONFIG_METHOD_SHARED) != 0)
return NULL; /* Not shared */
s_wifi = nm_connection_get_setting_wireless (connection);
if (s_wifi) {
s_wsec = nm_connection_get_setting_wireless_security (connection);
if (s_wsec)
return NM_AUTH_PERMISSION_WIFI_SHARE_PROTECTED;
else
return NM_AUTH_PERMISSION_WIFI_SHARE_OPEN;
}
return NULL;
}
/*********************************/
static void
nm_gvalue_destroy (gpointer data)
{
GValue *value = (GValue *) data;
g_value_unset (value);
g_slice_free (GValue, value);
}
GHashTable *
value_hash_create (void)
{
return g_hash_table_new_full (g_str_hash, g_str_equal, g_free, nm_gvalue_destroy);
}
void
value_hash_add (GHashTable *hash,
const char *key,
GValue *value)
{
g_hash_table_insert (hash, g_strdup (key), value);
}
void
value_hash_add_str (GHashTable *hash,
const char *key,
const char *str)
{
GValue *value;
value = g_slice_new0 (GValue);
g_value_init (value, G_TYPE_STRING);
g_value_set_string (value, str);
value_hash_add (hash, key, value);
}
void
value_hash_add_object_path (GHashTable *hash,
const char *key,
const char *op)
{
GValue *value;
value = g_slice_new0 (GValue);
g_value_init (value, DBUS_TYPE_G_OBJECT_PATH);
g_value_set_boxed (value, op);
value_hash_add (hash, key, value);
}
void
value_hash_add_uint (GHashTable *hash,
const char *key,
guint32 val)
{
GValue *value;
value = g_slice_new0 (GValue);
g_value_init (value, G_TYPE_UINT);
g_value_set_uint (value, val);
value_hash_add (hash, key, value);
}
void
value_hash_add_bool (GHashTable *hash,
const char *key,
gboolean val)
{
GValue *value;
value = g_slice_new0 (GValue);
g_value_init (value, G_TYPE_BOOLEAN);
g_value_set_boolean (value, val);
value_hash_add (hash, key, value);
}
void
value_hash_add_object_property (GHashTable *hash,
const char *key,
GObject *object,
const char *prop,
GType val_type)
{
GValue *value;
value = g_slice_new0 (GValue);
g_value_init (value, val_type);
g_object_get_property (object, prop, value);
value_hash_add (hash, key, value);
}
static char *
get_new_connection_name (const GSList *existing,
const char *preferred,
const char *fallback_prefix)
{
GSList *names = NULL;
const GSList *iter;
char *cname = NULL;
int i = 0;
gboolean preferred_found = FALSE;
g_assert (fallback_prefix);
for (iter = existing; iter; iter = g_slist_next (iter)) {
NMConnection *candidate = NM_CONNECTION (iter->data);
const char *id;
id = nm_connection_get_id (candidate);
g_assert (id);
names = g_slist_append (names, (gpointer) id);
if (preferred && !preferred_found && (strcmp (preferred, id) == 0))
preferred_found = TRUE;
}
/* Return the preferred name if it was unique */
if (preferred && !preferred_found) {
g_slist_free (names);
return g_strdup (preferred);
}
/* Otherwise find the next available unique connection name using the given
* connection name template.
*/
while (!cname && (i++ < 10000)) {
char *temp;
gboolean found = FALSE;
/* Translators: the first %s is a prefix for the connection id, such
* as "Wired Connection" or "VPN Connection". The %d is a number
* that is combined with the first argument to create a unique
* connection id. */
temp = g_strdup_printf (C_("connection id fallback", "%s %d"),
fallback_prefix, i);
for (iter = names; iter; iter = g_slist_next (iter)) {
if (!strcmp (iter->data, temp)) {
found = TRUE;
break;
}
}
if (!found)
cname = temp;
else
g_free (temp);
}
g_slist_free (names);
return cname;
}
static char *
get_new_connection_ifname (const GSList *existing,
const char *prefix)
{
int i;
char *name;
const GSList *iter;
gboolean found;
for (i = 0; i < 500; i++) {
name = g_strdup_printf ("%s%d", prefix, i);
if (nm_platform_link_exists (name))
goto next;
for (iter = existing, found = FALSE; iter; iter = g_slist_next (iter)) {
NMConnection *candidate = iter->data;
if (g_strcmp0 (nm_connection_get_interface_name (candidate), name) == 0) {
found = TRUE;
break;
}
}
if (!found)
return name;
next:
g_free (name);
}
return NULL;
}
const char *
nm_utils_get_ip_config_method (NMConnection *connection,
GType ip_setting_type)
{
NMSettingConnection *s_con;
NMSettingIP4Config *s_ip4;
NMSettingIP6Config *s_ip6;
const char *method;
s_con = nm_connection_get_setting_connection (connection);
if (ip_setting_type == NM_TYPE_SETTING_IP4_CONFIG) {
g_return_val_if_fail (s_con != NULL, NM_SETTING_IP4_CONFIG_METHOD_AUTO);
if (nm_setting_connection_get_master (s_con))
return NM_SETTING_IP4_CONFIG_METHOD_DISABLED;
else {
s_ip4 = nm_connection_get_setting_ip4_config (connection);
g_return_val_if_fail (s_ip4 != NULL, NM_SETTING_IP4_CONFIG_METHOD_AUTO);
method = nm_setting_ip4_config_get_method (s_ip4);
g_return_val_if_fail (method != NULL, NM_SETTING_IP4_CONFIG_METHOD_AUTO);
return method;
}
} else if (ip_setting_type == NM_TYPE_SETTING_IP6_CONFIG) {
g_return_val_if_fail (s_con != NULL, NM_SETTING_IP6_CONFIG_METHOD_AUTO);
if (nm_setting_connection_get_master (s_con))
return NM_SETTING_IP6_CONFIG_METHOD_IGNORE;
else {
s_ip6 = nm_connection_get_setting_ip6_config (connection);
g_return_val_if_fail (s_ip6 != NULL, NM_SETTING_IP6_CONFIG_METHOD_AUTO);
method = nm_setting_ip6_config_get_method (s_ip6);
g_return_val_if_fail (method != NULL, NM_SETTING_IP6_CONFIG_METHOD_AUTO);
return method;
}
} else
g_assert_not_reached ();
}
void
nm_utils_complete_generic (NMConnection *connection,
const char *ctype,
const GSList *existing,
const char *preferred_id,
const char *fallback_id_prefix,
const char *ifname_prefix,
gboolean default_enable_ipv6)
{
NMSettingConnection *s_con;
char *id, *uuid, *ifname;
GHashTable *parameters;
g_assert (fallback_id_prefix);
s_con = nm_connection_get_setting_connection (connection);
if (!s_con) {
s_con = (NMSettingConnection *) nm_setting_connection_new ();
nm_connection_add_setting (connection, NM_SETTING (s_con));
}
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_TYPE, ctype, NULL);
if (!nm_setting_connection_get_uuid (s_con)) {
uuid = nm_utils_uuid_generate ();
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_UUID, uuid, NULL);
g_free (uuid);
}
/* Add a connection ID if absent */
if (!nm_setting_connection_get_id (s_con)) {
id = get_new_connection_name (existing, preferred_id, fallback_id_prefix);
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_ID, id, NULL);
g_free (id);
}
/* Add an interface name, if requested */
if (ifname_prefix && !nm_setting_connection_get_interface_name (s_con)) {
ifname = get_new_connection_ifname (existing, ifname_prefix);
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_INTERFACE_NAME, ifname, NULL);
g_free (ifname);
}
/* Normalize */
parameters = g_hash_table_new (g_str_hash, g_str_equal);
g_hash_table_insert (parameters, NM_CONNECTION_NORMALIZE_PARAM_IP6_CONFIG_METHOD,
default_enable_ipv6 ? NM_SETTING_IP6_CONFIG_METHOD_AUTO : NM_SETTING_IP6_CONFIG_METHOD_IGNORE);
nm_connection_normalize (connection, parameters, NULL, NULL);
g_hash_table_destroy (parameters);
}
char *
nm_utils_new_vlan_name (const char *parent_iface, guint32 vlan_id)
{
/* Basically VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD */
return g_strdup_printf ("%s.%d", parent_iface, vlan_id);
}
/**
* nm_utils_read_resolv_conf_nameservers():
* @rc_contents: contents of a resolv.conf; or %NULL to read /etc/resolv.conf
*
* Reads all nameservers out of @rc_contents or /etc/resolv.conf and returns
* them.
*
* Returns: a #GPtrArray of 'char *' elements of each nameserver line from
* @contents or resolv.conf
*/
GPtrArray *
nm_utils_read_resolv_conf_nameservers (const char *rc_contents)
{
GPtrArray *nameservers = NULL;
char *contents = NULL;
char **lines, **iter;
char *p;
if (rc_contents)
contents = g_strdup (rc_contents);
else {
if (!g_file_get_contents (_PATH_RESCONF, &contents, NULL, NULL))
return NULL;
}
nameservers = g_ptr_array_new_full (3, g_free);
lines = g_strsplit_set (contents, "\r\n", -1);
for (iter = lines; *iter; iter++) {
if (!g_str_has_prefix (*iter, "nameserver"))
continue;
p = *iter + strlen ("nameserver");
if (!g_ascii_isspace (*p++))
continue;
/* Skip intermediate whitespace */
while (g_ascii_isspace (*p))
p++;
g_strchomp (p);
g_ptr_array_add (nameservers, g_strdup (p));
}
g_strfreev (lines);
g_free (contents);
return nameservers;
}
static GHashTable *
check_property_in_hash (GHashTable *hash,
const char *s_name,
const char *p_name)
{
GHashTable *props;
props = g_hash_table_lookup (hash, s_name);
if ( !props
|| !g_hash_table_lookup (props, p_name)) {
return NULL;
}
return props;
}
static void
remove_from_hash (GHashTable *s_hash,
GHashTable *p_hash,
const char *s_name,
const char *p_name)
{
g_hash_table_remove (p_hash, p_name);
if (g_hash_table_size (p_hash) == 0)
g_hash_table_remove (s_hash, s_name);
}
static gboolean
check_ip6_method (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_ip6_method, *candidate_ip6_method;
NMSettingIP6Config *candidate_ip6;
gboolean allow = FALSE;
props = check_property_in_hash (settings,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_METHOD);
if (!props)
return TRUE;
/* If the generated connection is 'link-local' and the candidate is both 'auto'
* and may-fail=TRUE, then the candidate is OK to use. may-fail is included
* in the decision because if the candidate is 'auto' but may-fail=FALSE, then
* the connection could not possibly have been previously activated on the
* device if the device has no non-link-local IPv6 address.
*/
orig_ip6_method = nm_utils_get_ip_config_method (orig, NM_TYPE_SETTING_IP6_CONFIG);
candidate_ip6_method = nm_utils_get_ip_config_method (candidate, NM_TYPE_SETTING_IP6_CONFIG);
candidate_ip6 = nm_connection_get_setting_ip6_config (candidate);
if ( strcmp (orig_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_LINK_LOCAL) == 0
&& strcmp (candidate_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_AUTO) == 0
&& (!candidate_ip6 || nm_setting_ip6_config_get_may_fail (candidate_ip6))) {
allow = TRUE;
}
/* If the generated connection method is 'link-local' or 'auto' and the candidate
* method is 'ignore' we can take the connection, because NM didn't simply take care
* of IPv6.
*/
if ( ( strcmp (orig_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_LINK_LOCAL) == 0
|| strcmp (orig_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_AUTO) == 0)
&& strcmp (candidate_ip6_method, NM_SETTING_IP6_CONFIG_METHOD_IGNORE) == 0) {
allow = TRUE;
}
if (allow) {
remove_from_hash (settings, props,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_METHOD);
}
return allow;
}
static gboolean
check_ip4_method (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings,
gboolean device_has_carrier)
{
GHashTable *props;
const char *orig_ip4_method, *candidate_ip4_method;
NMSettingIP4Config *candidate_ip4;
props = check_property_in_hash (settings,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP4_CONFIG_METHOD);
if (!props)
return TRUE;
/* If the generated connection is 'disabled' (device had no IP addresses)
* but it has no carrier, that most likely means that IP addressing could
* not complete and thus no IP addresses were assigned. In that case, allow
* matching to the "auto" method.
*/
orig_ip4_method = nm_utils_get_ip_config_method (orig, NM_TYPE_SETTING_IP4_CONFIG);
candidate_ip4_method = nm_utils_get_ip_config_method (candidate, NM_TYPE_SETTING_IP4_CONFIG);
candidate_ip4 = nm_connection_get_setting_ip4_config (candidate);
if ( strcmp (orig_ip4_method, NM_SETTING_IP4_CONFIG_METHOD_DISABLED) == 0
&& strcmp (candidate_ip4_method, NM_SETTING_IP4_CONFIG_METHOD_AUTO) == 0
&& (!candidate_ip4 || nm_setting_ip4_config_get_may_fail (candidate_ip4))
&& (device_has_carrier == FALSE)) {
remove_from_hash (settings, props,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP4_CONFIG_METHOD);
return TRUE;
}
return FALSE;
}
static gboolean
check_connection_interface_name (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_ifname, *cand_ifname;
NMSettingConnection *s_con_orig, *s_con_cand;
props = check_property_in_hash (settings,
NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME);
if (!props)
return TRUE;
/* If one of the interface names is NULL, we accept that connection */
s_con_orig = nm_connection_get_setting_connection (orig);
s_con_cand = nm_connection_get_setting_connection (candidate);
orig_ifname = nm_setting_connection_get_interface_name (s_con_orig);
cand_ifname = nm_setting_connection_get_interface_name (s_con_cand);
if (!orig_ifname || !cand_ifname) {
remove_from_hash (settings, props,
NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME);
return TRUE;
}
return FALSE;
}
static gboolean
check_connection_mac_address (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings)
{
GHashTable *props;
const char *orig_mac = NULL, *cand_mac = NULL;
NMSettingWired *s_wired_orig, *s_wired_cand;
props = check_property_in_hash (settings,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_MAC_ADDRESS);
if (!props)
return TRUE;
/* If one of the MAC addresses is NULL, we accept that connection */
s_wired_orig = nm_connection_get_setting_wired (orig);
if (s_wired_orig)
orig_mac = nm_setting_wired_get_mac_address (s_wired_orig);
s_wired_cand = nm_connection_get_setting_wired (candidate);
if (s_wired_cand)
cand_mac = nm_setting_wired_get_mac_address (s_wired_cand);
if (!orig_mac || !cand_mac) {
remove_from_hash (settings, props,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_WIRED_MAC_ADDRESS);
return TRUE;
}
return FALSE;
}
static NMConnection *
check_possible_match (NMConnection *orig,
NMConnection *candidate,
GHashTable *settings,
gboolean device_has_carrier)
{
g_return_val_if_fail (settings != NULL, NULL);
if (!check_ip6_method (orig, candidate, settings))
return NULL;
if (!check_ip4_method (orig, candidate, settings, device_has_carrier))
return NULL;
if (!check_connection_interface_name (orig, candidate, settings))
return NULL;
if (!check_connection_mac_address (orig, candidate, settings))
return NULL;
if (g_hash_table_size (settings) == 0)
return candidate;
else
return NULL;
}
/**
* nm_utils_match_connection:
* @connections: a (optionally pre-sorted) list of connections from which to
* find a matching connection to @original based on "inferrable" properties
* @original: the #NMConnection to find a match for from @connections
* @device_has_carrier: pass %TRUE if the device that generated @original has
* a carrier, %FALSE if not
* @match_filter_func: a function to check whether each connection from @connections
* should be considered for matching. This function should return %TRUE if the
* connection should be considered, %FALSE if the connection should be ignored
* @match_compat_data: data pointer passed to @match_filter_func
*
* Checks each connection from @connections until a matching connection is found
* considering only setting properties marked with %NM_SETTING_PARAM_INFERRABLE
* and checking a few other characteristics like IPv6 method. If the caller
* desires some priority order of the connections, @connections should be
* sorted before calling this function.
*
* Returns: the best #NMConnection matching @original, or %NULL if no connection
* matches well enough.
*/
NMConnection *
nm_utils_match_connection (GSList *connections,
NMConnection *original,
gboolean device_has_carrier,
NMUtilsMatchFilterFunc match_filter_func,
gpointer match_filter_data)
{
NMConnection *best_match = NULL;
GSList *iter;
for (iter = connections; iter; iter = iter->next) {
NMConnection *candidate = NM_CONNECTION (iter->data);
GHashTable *diffs = NULL;
if (match_filter_func) {
if (!match_filter_func (candidate, match_filter_data))
continue;
}
if (!nm_connection_diff (original, candidate, NM_SETTING_COMPARE_FLAG_INFERRABLE, &diffs)) {
if (!best_match)
best_match = check_possible_match (original, candidate, diffs, device_has_carrier);
if (!best_match && nm_logging_enabled (LOGL_DEBUG, LOGD_CORE)) {
GString *diff_string;
GHashTableIter s_iter, p_iter;
gpointer setting_name, setting;
gpointer property_name, value;
diff_string = g_string_new (NULL);
g_hash_table_iter_init (&s_iter, diffs);
while (g_hash_table_iter_next (&s_iter, &setting_name, &setting)) {
g_hash_table_iter_init (&p_iter, setting);
while (g_hash_table_iter_next (&p_iter, &property_name, &value)) {
if (diff_string->len)
g_string_append (diff_string, ", ");
g_string_append_printf (diff_string, "%s.%s",
(char *) setting_name,
(char *) property_name);
}
}
nm_log_dbg (LOGD_CORE, "Connection '%s' differs from candidate '%s' in %s",
nm_connection_get_id (original),
nm_connection_get_id (candidate),
diff_string->str);
g_string_free (diff_string, TRUE);
}
g_hash_table_unref (diffs);
continue;
}
/* Exact match */
return candidate;
}
/* Best match (if any) */
return best_match;
}
int
nm_utils_cmp_connection_by_autoconnect_priority (NMConnection **a, NMConnection **b)
{
NMSettingConnection *a_s_con, *b_s_con;
gboolean a_ac, b_ac;
gint a_ap, b_ap;
a_s_con = nm_connection_get_setting_connection (*a);
b_s_con = nm_connection_get_setting_connection (*b);
a_ac = !!nm_setting_connection_get_autoconnect (a_s_con);
b_ac = !!nm_setting_connection_get_autoconnect (b_s_con);
if (a_ac != b_ac)
return ((int) b_ac) - ((int) a_ac);
if (!a_ac)
return 0;
a_ap = nm_setting_connection_get_autoconnect_priority (a_s_con);
b_ap = nm_setting_connection_get_autoconnect_priority (b_s_con);
if (a_ap != b_ap)
return (a_ap > b_ap) ? -1 : 1;
return 0;
}
/* nm_utils_ascii_str_to_int64:
*
* A wrapper for g_ascii_strtoll, that checks whether the whole string
* can be successfully converted to a number and is within a given
* range. On any error, @fallback will be returned and %errno will be set
* to a non-zero value. On success, %errno will be set to zero, check %errno
* for errors. Any trailing or leading (ascii) white space is ignored and the
* functions is locale independent.
*
* The function is guaranteed to return a value between @min and @max
* (inclusive) or @fallback. Also, the parsing is rather strict, it does
* not allow for any unrecognized characters, except leading and trailing
* white space.
**/
gint64
nm_utils_ascii_str_to_int64 (const char *str, guint base, gint64 min, gint64 max, gint64 fallback)
{
gint64 v;
size_t len;
char buf[64], *s, *str_free = NULL;
if (str) {
while (g_ascii_isspace (str[0]))
str++;
}
if (!str || !str[0]) {
errno = EINVAL;
return fallback;
}
len = strlen (str);
if (g_ascii_isspace (str[--len])) {
/* backward search the first non-ws character.
* We already know that str[0] is non-ws. */
while (g_ascii_isspace (str[--len]))
;
/* str[len] is now the last non-ws character... */
len++;
if (len >= sizeof (buf))
s = str_free = g_malloc (len + 1);
else
s = buf;
memcpy (s, str, len);
s[len] = 0;
/*
g_assert (len > 0 && len < strlen (str) && len == strlen (s));
g_assert (!g_ascii_isspace (str[len-1]) && g_ascii_isspace (str[len]));
g_assert (strncmp (str, s, len) == 0);
*/
str = s;
}
errno = 0;
v = g_ascii_strtoll (str, &s, base);
if (errno != 0)
v = fallback;
else if (s[0] != 0) {
errno = EINVAL;
v = fallback;
} else if (v > max || v < min) {
errno = ERANGE;
v = fallback;
}
if (G_UNLIKELY (str_free))
g_free (str_free);
return v;
}
static gint64 monotonic_timestamp_offset_sec;
static void
monotonic_timestamp_get (struct timespec *tp)
{
static int clock_mode = 0;
gboolean first_time = FALSE;
int err = 0;
switch (clock_mode) {
case 0:
/* the clock is not yet initialized (first run) */
err = clock_gettime (CLOCK_BOOTTIME, tp);
if (err == -1 && errno == EINVAL) {
clock_mode = 2;
err = clock_gettime (CLOCK_MONOTONIC, tp);
} else
clock_mode = 1;
first_time = TRUE;
break;
case 1:
/* default, return CLOCK_BOOTTIME */
err = clock_gettime (CLOCK_BOOTTIME, tp);
break;
case 2:
/* fallback, return CLOCK_MONOTONIC. Kernels prior to 2.6.39
* don't support CLOCK_BOOTTIME. */
err = clock_gettime (CLOCK_MONOTONIC, tp);
break;
}
g_assert (err == 0); (void)err;
g_assert (tp->tv_nsec >= 0 && tp->tv_nsec < NM_UTILS_NS_PER_SECOND);
if (G_LIKELY (!first_time))
return;
/* Calculate an offset for the time stamp.
*
* We always want positive values, because then we can initialize
* a timestamp with 0 and be sure, that it will be less then any
* value nm_utils_get_monotonic_timestamp_*() might return.
* For this to be true also for nm_utils_get_monotonic_timestamp_s() at
* early boot, we have to shift the timestamp to start counting at
* least from 1 second onward.
*
* Another advantage of shifting is, that this way we make use of the whole 31 bit
* range of signed int, before the time stamp for nm_utils_get_monotonic_timestamp_s()
* wraps (~68 years).
**/
monotonic_timestamp_offset_sec = (- ((gint64) tp->tv_sec)) + 1;
if (nm_logging_enabled (LOGL_DEBUG, LOGD_CORE)) {
time_t now = time (NULL);
struct tm tm;
char s[255];
strftime (s, sizeof (s), "%Y-%m-%d %H:%M:%S", localtime_r (&now, &tm));
nm_log_dbg (LOGD_CORE, "monotonic timestamp started counting 1.%09ld seconds ago with "
"an offset of %lld.0 seconds to %s (local time is %s)",
tp->tv_nsec, (long long) -monotonic_timestamp_offset_sec,
clock_mode == 1 ? "CLOCK_BOOTTIME" : "CLOCK_MONOTONIC", s);
}
}
/**
* nm_utils_get_monotonic_timestamp_ns:
*
* Returns: a monotonically increasing time stamp in nanoseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ns (void)
{
struct timespec tp;
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * NM_UTILS_NS_PER_SECOND +
tp.tv_nsec;
}
/**
* nm_utils_get_monotonic_timestamp_us:
*
* Returns: a monotonically increasing time stamp in microseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_us (void)
{
struct timespec tp;
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) G_USEC_PER_SEC) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/G_USEC_PER_SEC));
}
/**
* nm_utils_get_monotonic_timestamp_ms:
*
* Returns: a monotonically increasing time stamp in milliseconds,
* starting at an unspecified offset. See clock_gettime(), %CLOCK_BOOTTIME.
*
* The returned value will start counting at an undefined point
* in the past and will always be positive.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint64
nm_utils_get_monotonic_timestamp_ms (void)
{
struct timespec tp;
monotonic_timestamp_get (&tp);
/* Although the result will always be positive, we return a signed
* integer, which makes it easier to calculate time differences (when
* you want to subtract signed values).
**/
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec) * ((gint64) 1000) +
(tp.tv_nsec / (NM_UTILS_NS_PER_SECOND/1000));
}
/**
* nm_utils_get_monotonic_timestamp_s:
*
* Returns: nm_utils_get_monotonic_timestamp_ms() in seconds (throwing
* away sub second parts). The returned value will always be positive.
*
* This value wraps after roughly 68 years which should be fine for any
* practical purpose.
*
* All the nm_utils_get_monotonic_timestamp_*s functions return the same
* timestamp but in different scales (nsec, usec, msec, sec).
**/
gint32
nm_utils_get_monotonic_timestamp_s (void)
{
struct timespec tp;
monotonic_timestamp_get (&tp);
return (((gint64) tp.tv_sec) + monotonic_timestamp_offset_sec);
}
typedef struct
{
const char *name;
NMSetting *setting;
NMSetting *diff_base_setting;
GHashTable *setting_diff;
} LogConnectionSettingData;
typedef struct
{
const char *item_name;
NMSettingDiffResult diff_result;
} LogConnectionSettingItem;
static gint
_log_connection_sort_hashes_fcn (gconstpointer a, gconstpointer b)
{
const LogConnectionSettingData *v1 = a;
const LogConnectionSettingData *v2 = b;
guint32 p1, p2;
NMSetting *s1, *s2;
s1 = v1->setting ? v1->setting : v1->diff_base_setting;
s2 = v2->setting ? v2->setting : v2->diff_base_setting;
g_assert (s1 && s2);
p1 = _nm_setting_get_setting_priority (s1);
p2 = _nm_setting_get_setting_priority (s2);
if (p1 != p2)
return p1 > p2 ? 1 : -1;
return strcmp (v1->name, v2->name);
}
static GArray *
_log_connection_sort_hashes (NMConnection *connection, NMConnection *diff_base, GHashTable *connection_diff)
{
GHashTableIter iter;
GArray *sorted_hashes;
LogConnectionSettingData setting_data;
sorted_hashes = g_array_sized_new (TRUE, FALSE, sizeof (LogConnectionSettingData), g_hash_table_size (connection_diff));
g_hash_table_iter_init (&iter, connection_diff);
while (g_hash_table_iter_next (&iter, (gpointer) &setting_data.name, (gpointer) &setting_data.setting_diff)) {
setting_data.setting = nm_connection_get_setting_by_name (connection, setting_data.name);
setting_data.diff_base_setting = diff_base ? nm_connection_get_setting_by_name (diff_base, setting_data.name) : NULL;
g_assert (setting_data.setting || setting_data.diff_base_setting);
g_array_append_val (sorted_hashes, setting_data);
}
g_array_sort (sorted_hashes, _log_connection_sort_hashes_fcn);
return sorted_hashes;
}
static gint
_log_connection_sort_names_fcn (gconstpointer a, gconstpointer b)
{
const LogConnectionSettingItem *v1 = a;
const LogConnectionSettingItem *v2 = b;
/* we want to first show the items, that disappeared, then the one that changed and
* then the ones that were added. */
if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) != (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A))
return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_A) ? -1 : 1;
if ((v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) != (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B))
return (v1->diff_result & NM_SETTING_DIFF_RESULT_IN_B) ? 1 : -1;
return strcmp (v1->item_name, v2->item_name);
}
static char *
_log_connection_get_property (NMSetting *setting, const char *name)
{
GValue val = G_VALUE_INIT;
char *s;
g_return_val_if_fail (setting, NULL);
if ( !NM_IS_SETTING_VPN (setting)
&& nm_setting_get_secret_flags (setting, name, NULL, NULL))
return g_strdup ("****");
if (!_nm_setting_get_property (setting, name, &val))
g_return_val_if_reached (FALSE);
if (G_VALUE_HOLDS_STRING (&val)) {
const char *val_s;
val_s = g_value_get_string (&val);
if (!val_s) {
/* for NULL, we want to return the unquoted string "NULL". */
s = g_strdup ("NULL");
} else {
char *escaped = g_strescape (val_s, "'");
s = g_strdup_printf ("'%s'", escaped);
g_free (escaped);
}
} else {
s = g_strdup_value_contents (&val);
if (s == NULL)
s = g_strdup ("NULL");
else {
char *escaped = g_strescape (s, "'");
g_free (s);
s = escaped;
}
}
g_value_unset(&val);
return s;
}
static void
_log_connection_sort_names (LogConnectionSettingData *setting_data, GArray *sorted_names)
{
GHashTableIter iter;
LogConnectionSettingItem item;
gpointer p;
g_array_set_size (sorted_names, 0);
g_hash_table_iter_init (&iter, setting_data->setting_diff);
while (g_hash_table_iter_next (&iter, (gpointer) &item.item_name, &p)) {
item.diff_result = GPOINTER_TO_UINT (p);
g_array_append_val (sorted_names, item);
}
g_array_sort (sorted_names, _log_connection_sort_names_fcn);
}
void
nm_utils_log_connection_diff (NMConnection *connection, NMConnection *diff_base, guint32 level, guint64 domain, const char *name, const char *prefix)
{
GHashTable *connection_diff = NULL;
GArray *sorted_hashes;
GArray *sorted_names = NULL;
int i, j;
gboolean connection_diff_are_same;
gboolean print_header = TRUE;
gboolean print_setting_header;
GString *str1;
g_return_if_fail (NM_IS_CONNECTION (connection));
g_return_if_fail (!diff_base || (NM_IS_CONNECTION (diff_base) && diff_base != connection));
/* For VPN setting types, this is broken, because we cannot (generically) print the content of data/secrets. Bummer... */
if (!nm_logging_enabled (level, domain))
return;
if (!prefix)
prefix = "";
if (!name)
name = "";
connection_diff_are_same = nm_connection_diff (connection, diff_base, NM_SETTING_COMPARE_FLAG_EXACT | NM_SETTING_COMPARE_FLAG_DIFF_RESULT_NO_DEFAULT, &connection_diff);
if (connection_diff_are_same) {
if (diff_base)
nm_log (level, domain, "%sconnection '%s' (%p and %p): no difference", prefix, name, connection, diff_base);
else
nm_log (level, domain, "%sconnection '%s' (%p): no properties set", prefix, name, connection);
g_assert (!connection_diff);
return;
}
/* FIXME: it doesn't nicely show the content of NMSettingVpn, becuase nm_connection_diff() does not
* expand the hash values. */
sorted_hashes = _log_connection_sort_hashes (connection, diff_base, connection_diff);
if (sorted_hashes->len <= 0)
goto out;
sorted_names = g_array_new (FALSE, FALSE, sizeof (LogConnectionSettingItem));
str1 = g_string_new (NULL);
for (i = 0; i < sorted_hashes->len; i++) {
LogConnectionSettingData *setting_data = &g_array_index (sorted_hashes, LogConnectionSettingData, i);
_log_connection_sort_names (setting_data, sorted_names);
print_setting_header = TRUE;
for (j = 0; j < sorted_names->len; j++) {
char *str_conn, *str_diff;
LogConnectionSettingItem *item = &g_array_index (sorted_names, LogConnectionSettingItem, j);
str_conn = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_A)
? _log_connection_get_property (setting_data->setting, item->item_name)
: NULL;
str_diff = (item->diff_result & NM_SETTING_DIFF_RESULT_IN_B)
? _log_connection_get_property (setting_data->diff_base_setting, item->item_name)
: NULL;
if (print_header) {
GError *err_verify = NULL;
if (diff_base)
nm_log (level, domain, "%sconnection '%s' (%p < %p):", prefix, name, connection, diff_base);
else
nm_log (level, domain, "%sconnection '%s' (%p):", prefix, name, connection);
print_header = FALSE;
if (!nm_connection_verify (connection, &err_verify)) {
nm_log (level, domain, "%sconnection %p does not verify: %s", prefix, connection, err_verify->message);
g_clear_error (&err_verify);
}
}
#define _NM_LOG_ALIGN "-25"
if (print_setting_header) {
if (diff_base) {
if (setting_data->setting && setting_data->diff_base_setting)
g_string_printf (str1, "%p < %p", setting_data->setting, setting_data->diff_base_setting);
else if (setting_data->diff_base_setting)
g_string_printf (str1, "*missing* < %p", setting_data->diff_base_setting);
else
g_string_printf (str1, "%p < *missing*", setting_data->setting);
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s [ %s ]", prefix, setting_data->name, str1->str);
} else
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s [ %p ]", prefix, setting_data->name, setting_data->setting);
print_setting_header = FALSE;
}
g_string_printf (str1, "%s.%s", setting_data->name, item->item_name);
switch (item->diff_result & (NM_SETTING_DIFF_RESULT_IN_A | NM_SETTING_DIFF_RESULT_IN_B)) {
case NM_SETTING_DIFF_RESULT_IN_B:
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s < %s", prefix, str1->str, str_diff ? str_diff : "NULL");
break;
case NM_SETTING_DIFF_RESULT_IN_A:
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s = %s", prefix, str1->str, str_conn ? str_conn : "NULL");
break;
default:
nm_log (level, domain, "%s%"_NM_LOG_ALIGN"s = %s < %s", prefix, str1->str, str_conn ? str_conn : "NULL", str_diff ? str_diff : "NULL");
break;
#undef _NM_LOG_ALIGN
}
g_free (str_conn);
g_free (str_diff);
}
}
g_array_free (sorted_names, TRUE);
g_string_free (str1, TRUE);
out:
g_hash_table_destroy (connection_diff);
g_array_free (sorted_hashes, TRUE);
}
/**
* nm_utils_ip6_property_path:
* @ifname: an interface name
* @property: a property name
*
* Returns the path to IPv6 property @property on @ifname. Note that
* this uses a static buffer.
*/
const char *
nm_utils_ip6_property_path (const char *ifname, const char *property)
{
#define IPV6_PROPERTY_DIR "/proc/sys/net/ipv6/conf/"
static char path[sizeof (IPV6_PROPERTY_DIR) + IFNAMSIZ + 32];
int len;
ifname = ASSERT_VALID_PATH_COMPONENT (ifname);
property = ASSERT_VALID_PATH_COMPONENT (property);
len = g_snprintf (path, sizeof (path), IPV6_PROPERTY_DIR "%s/%s",
ifname, property);
g_assert (len < sizeof (path) - 1);
return path;
}
const char *
ASSERT_VALID_PATH_COMPONENT (const char *name)
{
const char *n;
if (name == NULL || name[0] == '\0')
goto fail;
if (name[0] == '.') {
if (name[1] == '\0')
goto fail;
if (name[1] == '.' && name[2] == '\0')
goto fail;
}
n = name;
do {
if (*n == '/')
goto fail;
} while (*(++n) != '\0');
return name;
fail:
if (name)
nm_log_err (LOGD_CORE, "Failed asserting path component: NULL");
else
nm_log_err (LOGD_CORE, "Failed asserting path component: \"%s\"", name);
g_error ("FATAL: Failed asserting path component: %s", name ? name : "(null)");
g_assert_not_reached ();
}
gboolean
nm_utils_is_specific_hostname (const char *name)
{
if (!name)
return FALSE;
if ( strcmp (name, "(none)")
&& strcmp (name, "localhost")
&& strcmp (name, "localhost6")
&& strcmp (name, "localhost.localdomain")
&& strcmp (name, "localhost6.localdomain6"))
return TRUE;
return FALSE;
}
/******************************************************************/
/* Returns the "u" (universal/local) bit value for a Modified EUI-64 */
static gboolean
get_gre_eui64_u_bit (guint32 addr)
{
static const struct {
guint32 mask;
guint32 result;
} items[] = {
{ 0xff000000 }, { 0x7f000000 }, /* IPv4 loopback */
{ 0xf0000000 }, { 0xe0000000 }, /* IPv4 multicast */
{ 0xffffff00 }, { 0xe0000000 }, /* IPv4 local multicast */
{ 0xffffffff }, { INADDR_BROADCAST }, /* limited broadcast */
{ 0xff000000 }, { 0x00000000 }, /* zero net */
{ 0xff000000 }, { 0x0a000000 }, /* private 10 (RFC3330) */
{ 0xfff00000 }, { 0xac100000 }, /* private 172 */
{ 0xffff0000 }, { 0xc0a80000 }, /* private 192 */
{ 0xffff0000 }, { 0xa9fe0000 }, /* IPv4 link-local */
{ 0xffffff00 }, { 0xc0586300 }, /* anycast 6-to-4 */
{ 0xffffff00 }, { 0xc0000200 }, /* test 192 */
{ 0xfffe0000 }, { 0xc6120000 }, /* test 198 */
};
guint i;
for (i = 0; i < G_N_ELEMENTS (items); i++) {
if ((addr & htonl (items[i].mask)) == htonl (items[i].result))
return 0x00; /* "local" scope */
}
return 0x02; /* "universal" scope */
}
/**
* nm_utils_get_ipv6_interface_identifier:
* @link_type: the hardware link type
* @hwaddr: the hardware address of the interface
* @hwaddr_len: the length (in bytes) of @hwaddr
* @out_iid: on success, filled with the interface identifier; on failure
* zeroed out
*
* Constructs an interface identifier in "Modified EUI-64" format which is
* suitable for constructing IPv6 addresses. Note that the identifier is
* not obscured in any way (eg, RFC3041).
*
* Returns: %TRUE if the interface identifier could be constructed, %FALSE if
* if could not be constructed.
*/
gboolean
nm_utils_get_ipv6_interface_identifier (NMLinkType link_type,
const guint8 *hwaddr,
guint hwaddr_len,
NMUtilsIPv6IfaceId *out_iid)
{
guint32 addr;
g_return_val_if_fail (hwaddr != NULL, FALSE);
g_return_val_if_fail (hwaddr_len > 0, FALSE);
g_return_val_if_fail (out_iid != NULL, FALSE);
out_iid->id = 0;
switch (link_type) {
case NM_LINK_TYPE_INFINIBAND:
/* Use the port GUID per http://tools.ietf.org/html/rfc4391#section-8,
* making sure to set the 'u' bit to 1. The GUID is the lower 64 bits
* of the IPoIB interface's hardware address.
*/
g_return_val_if_fail (hwaddr_len == INFINIBAND_ALEN, FALSE);
memcpy (out_iid->id_u8, hwaddr + INFINIBAND_ALEN - 8, 8);
out_iid->id_u8[0] |= 0x02;
return TRUE;
case NM_LINK_TYPE_GRE:
case NM_LINK_TYPE_GRETAP:
/* Hardware address is the network-endian IPv4 address */
g_return_val_if_fail (hwaddr_len == 4, FALSE);
addr = * (guint32 *) hwaddr;
out_iid->id_u8[0] = get_gre_eui64_u_bit (addr);
out_iid->id_u8[1] = 0x00;
out_iid->id_u8[2] = 0x5E;
out_iid->id_u8[3] = 0xFE;
memcpy (out_iid->id_u8 + 4, &addr, 4);
return TRUE;
default:
if (hwaddr_len == ETH_ALEN) {
/* Translate 48-bit MAC address to a 64-bit Modified EUI-64. See
* http://tools.ietf.org/html/rfc4291#appendix-A
*/
out_iid->id_u8[0] = hwaddr[0] ^ 0x02;
out_iid->id_u8[1] = hwaddr[1];
out_iid->id_u8[2] = hwaddr[2];
out_iid->id_u8[3] = 0xff;
out_iid->id_u8[4] = 0xfe;
out_iid->id_u8[5] = hwaddr[3];
out_iid->id_u8[6] = hwaddr[4];
out_iid->id_u8[7] = hwaddr[5];
return TRUE;
}
break;
}
return FALSE;
}
void
nm_utils_ipv6_addr_set_interface_identfier (struct in6_addr *addr,
const NMUtilsIPv6IfaceId iid)
{
memcpy (addr->s6_addr + 8, &iid.id_u8, 8);
}
void
nm_utils_ipv6_interface_identfier_get_from_addr (NMUtilsIPv6IfaceId *iid,
const struct in6_addr *addr)
{
memcpy (iid, addr->s6_addr + 8, 8);
}
/**
* nm_utils_connection_hash_to_dict:
* @hash: a hashed #NMConnection
*
* Returns: a (floating) #GVariant equivalent to @hash.
*/
GVariant *
nm_utils_connection_hash_to_dict (GHashTable *hash)
{
GValue val = { 0, };
GVariant *variant;
if (!hash)
return NULL;
g_value_init (&val, DBUS_TYPE_G_MAP_OF_MAP_OF_VARIANT);
g_value_set_boxed (&val, hash);
variant = dbus_g_value_build_g_variant (&val);
g_value_unset (&val);
return variant;
}
/**
* nm_utils_connection_dict_to_hash:
* @dict: a #GVariant-serialized #NMConnection
*
* Returns: a #GHashTable equivalent to @dict.
*/
GHashTable *
nm_utils_connection_dict_to_hash (GVariant *dict)
{
GValue val = { 0, };
if (!dict)
return NULL;
dbus_g_value_parse_g_variant (dict, &val);
return g_value_get_boxed (&val);
}
GSList *
nm_utils_ip4_routes_from_gvalue (const GValue *value)
{
GPtrArray *routes;
int i;
GSList *list = NULL;
routes = (GPtrArray *) g_value_get_boxed (value);
for (i = 0; routes && (i < routes->len); i++) {
GArray *array = (GArray *) g_ptr_array_index (routes, i);
NMIP4Route *route;
if (array->len < 4) {
g_warning ("Ignoring invalid IP4 route");
continue;
}
route = nm_ip4_route_new ();
nm_ip4_route_set_dest (route, g_array_index (array, guint32, 0));
nm_ip4_route_set_prefix (route, g_array_index (array, guint32, 1));
nm_ip4_route_set_next_hop (route, g_array_index (array, guint32, 2));
nm_ip4_route_set_metric (route, g_array_index (array, guint32, 3));
list = g_slist_prepend (list, route);
}
return g_slist_reverse (list);
}
static gboolean
_nm_utils_gvalue_array_validate (GValueArray *elements, guint n_expected, ...)
{
va_list args;
GValue *tmp;
int i;
gboolean valid = FALSE;
if (n_expected != elements->n_values)
return FALSE;
va_start (args, n_expected);
for (i = 0; i < n_expected; i++) {
tmp = g_value_array_get_nth (elements, i);
if (G_VALUE_TYPE (tmp) != va_arg (args, GType))
goto done;
}
valid = TRUE;
done:
va_end (args);
return valid;
}
GSList *
nm_utils_ip6_routes_from_gvalue (const GValue *value)
{
GPtrArray *routes;
int i;
GSList *list = NULL;
routes = (GPtrArray *) g_value_get_boxed (value);
for (i = 0; routes && (i < routes->len); i++) {
GValueArray *route_values = (GValueArray *) g_ptr_array_index (routes, i);
GByteArray *dest, *next_hop;
guint prefix, metric;
NMIP6Route *route;
if (!_nm_utils_gvalue_array_validate (route_values, 4,
DBUS_TYPE_G_UCHAR_ARRAY,
G_TYPE_UINT,
DBUS_TYPE_G_UCHAR_ARRAY,
G_TYPE_UINT)) {
g_warning ("Ignoring invalid IP6 route");
continue;
}
dest = g_value_get_boxed (g_value_array_get_nth (route_values, 0));
if (dest->len != 16) {
g_warning ("%s: ignoring invalid IP6 dest address of length %d",
__func__, dest->len);
continue;
}
prefix = g_value_get_uint (g_value_array_get_nth (route_values, 1));
next_hop = g_value_get_boxed (g_value_array_get_nth (route_values, 2));
if (next_hop->len != 16) {
g_warning ("%s: ignoring invalid IP6 next_hop address of length %d",
__func__, next_hop->len);
continue;
}
metric = g_value_get_uint (g_value_array_get_nth (route_values, 3));
route = nm_ip6_route_new ();
nm_ip6_route_set_dest (route, (struct in6_addr *)dest->data);
nm_ip6_route_set_prefix (route, prefix);
nm_ip6_route_set_next_hop (route, (struct in6_addr *)next_hop->data);
nm_ip6_route_set_metric (route, metric);
list = g_slist_prepend (list, route);
}
return g_slist_reverse (list);
}