abaddon/src/audio/manager.cpp
2023-07-17 21:37:24 -04:00

505 lines
17 KiB
C++

#ifdef WITH_VOICE
// clang-format off
#ifdef _WIN32
#include <winsock2.h>
#endif
#include "manager.hpp"
#include <array>
#include <glibmm/main.h>
#include <spdlog/spdlog.h>
#include <miniaudio.h>
#include <opus.h>
#include <cstring>
// clang-format on
const uint8_t *StripRTPExtensionHeader(const uint8_t *buf, int num_bytes, size_t &outlen) {
if (buf[0] == 0xbe && buf[1] == 0xde && num_bytes > 4) {
uint64_t offset = 4 + 4 * ((buf[2] << 8) | buf[3]);
outlen = num_bytes - offset;
return buf + offset;
}
outlen = num_bytes;
return buf;
}
void data_callback(ma_device *pDevice, void *pOutput, const void *pInput, ma_uint32 frameCount) {
AudioManager *mgr = reinterpret_cast<AudioManager *>(pDevice->pUserData);
if (mgr == nullptr) return;
std::lock_guard<std::mutex> _(mgr->m_mutex);
auto *pOutputF32 = static_cast<float *>(pOutput);
for (auto &[ssrc, pair] : mgr->m_sources) {
double volume = 1.0;
if (const auto vol_it = mgr->m_volume_ssrc.find(ssrc); vol_it != mgr->m_volume_ssrc.end()) {
volume = vol_it->second;
}
auto &buf = pair.first;
const size_t n = std::min(static_cast<size_t>(buf.size()), static_cast<size_t>(frameCount * 2ULL));
for (size_t i = 0; i < n; i++) {
pOutputF32[i] += volume * buf[i] / 32768.F;
}
buf.erase(buf.begin(), buf.begin() + n);
}
}
void capture_data_callback(ma_device *pDevice, void *pOutput, const void *pInput, ma_uint32 frameCount) {
auto *mgr = reinterpret_cast<AudioManager *>(pDevice->pUserData);
if (mgr == nullptr) return;
mgr->OnCapturedPCM(static_cast<const int16_t *>(pInput), frameCount);
/*
* You can simply increment it by 480 in UDPSocket::SendEncrypted but this is wrong
* The timestamp is supposed to be strictly linear eg. if there's discontinuous
* transmission for 1 second then the timestamp should be 48000 greater than the
* last packet. So it's incremented here because this is fired 100x per second
* and is always called in sync with UDPSocket::SendEncrypted
*/
mgr->m_rtp_timestamp += 480;
}
AudioManager::AudioManager() {
m_ok = true;
m_rnnoise = rnnoise_create(nullptr);
spdlog::get("audio")->info("RNNoise expects {} frames", rnnoise_get_frame_size());
int err;
m_encoder = opus_encoder_create(48000, 2, OPUS_APPLICATION_VOIP, &err);
if (err != OPUS_OK) {
spdlog::get("audio")->error("failed to initialize opus encoder: {}", err);
m_ok = false;
return;
}
opus_encoder_ctl(m_encoder, OPUS_SET_BITRATE(64000));
if (ma_context_init(nullptr, 0, nullptr, &m_context) != MA_SUCCESS) {
spdlog::get("audio")->error("failed to initialize context");
m_ok = false;
return;
}
spdlog::get("audio")->info("Audio backend: {}", ma_get_backend_name(m_context.backend));
Enumerate();
m_playback_config = ma_device_config_init(ma_device_type_playback);
m_playback_config.playback.format = ma_format_f32;
m_playback_config.playback.channels = 2;
m_playback_config.sampleRate = 48000;
m_playback_config.dataCallback = data_callback;
m_playback_config.pUserData = this;
if (const auto playback_id = m_devices.GetDefaultPlayback(); playback_id.has_value()) {
m_playback_id = *playback_id;
m_playback_config.playback.pDeviceID = &m_playback_id;
if (ma_device_init(&m_context, &m_playback_config, &m_playback_device) != MA_SUCCESS) {
spdlog::get("audio")->error("failed to initialize playback device");
m_ok = false;
return;
}
if (ma_device_start(&m_playback_device) != MA_SUCCESS) {
spdlog::get("audio")->error("failed to start playback");
ma_device_uninit(&m_playback_device);
m_ok = false;
return;
}
char playback_device_name[MA_MAX_DEVICE_NAME_LENGTH + 1];
ma_device_get_name(&m_playback_device, ma_device_type_playback, playback_device_name, sizeof(playback_device_name), nullptr);
spdlog::get("audio")->info("using {} as playback device", playback_device_name);
}
m_capture_config = ma_device_config_init(ma_device_type_capture);
m_capture_config.capture.format = ma_format_s16;
m_capture_config.capture.channels = 2;
m_capture_config.sampleRate = 48000;
m_capture_config.periodSizeInFrames = 480;
m_capture_config.dataCallback = capture_data_callback;
m_capture_config.pUserData = this;
if (const auto capture_id = m_devices.GetDefaultCapture(); capture_id.has_value()) {
m_capture_id = *capture_id;
m_capture_config.capture.pDeviceID = &m_capture_id;
if (ma_device_init(&m_context, &m_capture_config, &m_capture_device) != MA_SUCCESS) {
spdlog::get("audio")->error("failed to initialize capture device");
m_ok = false;
return;
}
char capture_device_name[MA_MAX_DEVICE_NAME_LENGTH + 1];
ma_device_get_name(&m_capture_device, ma_device_type_capture, capture_device_name, sizeof(capture_device_name), nullptr);
spdlog::get("audio")->info("using {} as capture device", capture_device_name);
}
Glib::signal_timeout().connect(sigc::mem_fun(*this, &AudioManager::DecayVolumeMeters), 40);
}
AudioManager::~AudioManager() {
ma_device_uninit(&m_playback_device);
ma_device_uninit(&m_capture_device);
ma_context_uninit(&m_context);
RemoveAllSSRCs();
rnnoise_destroy(m_rnnoise);
}
void AudioManager::AddSSRC(uint32_t ssrc) {
std::lock_guard<std::mutex> _(m_mutex);
int error;
if (m_sources.find(ssrc) == m_sources.end()) {
auto *decoder = opus_decoder_create(48000, 2, &error);
m_sources.insert(std::make_pair(ssrc, std::make_pair(std::deque<int16_t> {}, decoder)));
}
}
void AudioManager::RemoveSSRC(uint32_t ssrc) {
std::lock_guard<std::mutex> _(m_mutex);
if (auto it = m_sources.find(ssrc); it != m_sources.end()) {
opus_decoder_destroy(it->second.second);
m_sources.erase(it);
}
}
void AudioManager::RemoveAllSSRCs() {
spdlog::get("audio")->info("removing all ssrc");
std::lock_guard<std::mutex> _(m_mutex);
for (auto &[ssrc, pair] : m_sources) {
opus_decoder_destroy(pair.second);
}
m_sources.clear();
}
void AudioManager::SetOpusBuffer(uint8_t *ptr) {
m_opus_buffer = ptr;
}
void AudioManager::FeedMeOpus(uint32_t ssrc, const std::vector<uint8_t> &data) {
if (!m_should_playback) return;
std::lock_guard<std::mutex> _(m_mutex);
if (m_muted_ssrcs.find(ssrc) != m_muted_ssrcs.end()) return;
size_t payload_size = 0;
const auto *opus_encoded = StripRTPExtensionHeader(data.data(), static_cast<int>(data.size()), payload_size);
static std::array<opus_int16, 120 * 48 * 2> pcm;
if (auto it = m_sources.find(ssrc); it != m_sources.end()) {
int decoded = opus_decode(it->second.second, opus_encoded, static_cast<opus_int32>(payload_size), pcm.data(), 120 * 48, 0);
if (decoded <= 0) {
} else {
UpdateReceiveVolume(ssrc, pcm.data(), decoded);
auto &buf = it->second.first;
buf.insert(buf.end(), pcm.begin(), pcm.begin() + decoded * 2);
}
}
}
void AudioManager::StartCaptureDevice() {
if (ma_device_start(&m_capture_device) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to start capture device");
}
}
void AudioManager::StopCaptureDevice() {
if (ma_device_stop(&m_capture_device) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to stop capture device");
}
}
void AudioManager::SetPlaybackDevice(const Gtk::TreeModel::iterator &iter) {
spdlog::get("audio")->debug("Setting new playback device");
const auto device_id = m_devices.GetPlaybackDeviceIDFromModel(iter);
if (!device_id) {
spdlog::get("audio")->error("Requested ID from iterator is invalid");
return;
}
m_devices.SetActivePlaybackDevice(iter);
m_playback_id = *device_id;
ma_device_uninit(&m_playback_device);
m_playback_config = ma_device_config_init(ma_device_type_playback);
m_playback_config.playback.format = ma_format_f32;
m_playback_config.playback.channels = 2;
m_playback_config.playback.pDeviceID = &m_playback_id;
m_playback_config.sampleRate = 48000;
m_playback_config.dataCallback = data_callback;
m_playback_config.pUserData = this;
if (ma_device_init(&m_context, &m_playback_config, &m_playback_device) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to initialize new device");
return;
}
if (ma_device_start(&m_playback_device) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to start new device");
return;
}
}
void AudioManager::SetCaptureDevice(const Gtk::TreeModel::iterator &iter) {
spdlog::get("audio")->debug("Setting new capture device");
const auto device_id = m_devices.GetCaptureDeviceIDFromModel(iter);
if (!device_id) {
spdlog::get("audio")->error("Requested ID from iterator is invalid");
return;
}
m_devices.SetActiveCaptureDevice(iter);
m_capture_id = *device_id;
ma_device_uninit(&m_capture_device);
m_capture_config = ma_device_config_init(ma_device_type_capture);
m_capture_config.capture.format = ma_format_s16;
m_capture_config.capture.channels = 2;
m_capture_config.capture.pDeviceID = &m_capture_id;
m_capture_config.sampleRate = 48000;
m_capture_config.periodSizeInFrames = 480;
m_capture_config.dataCallback = capture_data_callback;
m_capture_config.pUserData = this;
if (ma_device_init(&m_context, &m_capture_config, &m_capture_device) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to initialize new device");
return;
}
// technically this should probably try and check old state but if you are in the window to change it then you are connected
if (ma_device_start(&m_capture_device) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to start new device");
return;
}
}
void AudioManager::SetCapture(bool capture) {
m_should_capture = capture;
}
void AudioManager::SetPlayback(bool playback) {
m_should_playback = playback;
}
void AudioManager::SetCaptureGate(double gate) {
m_capture_gate = gate;
}
void AudioManager::SetCaptureGain(double gain) {
m_capture_gain = gain;
}
double AudioManager::GetCaptureGate() const noexcept {
return m_capture_gate;
}
double AudioManager::GetCaptureGain() const noexcept {
return m_capture_gain;
}
void AudioManager::SetMuteSSRC(uint32_t ssrc, bool mute) {
std::lock_guard<std::mutex> _(m_mutex);
if (mute) {
m_muted_ssrcs.insert(ssrc);
} else {
m_muted_ssrcs.erase(ssrc);
}
}
void AudioManager::SetVolumeSSRC(uint32_t ssrc, double volume) {
std::lock_guard<std::mutex> _(m_mutex);
m_volume_ssrc[ssrc] = volume;
}
double AudioManager::GetVolumeSSRC(uint32_t ssrc) const {
std::lock_guard<std::mutex> _(m_mutex);
if (const auto iter = m_volume_ssrc.find(ssrc); iter != m_volume_ssrc.end()) {
return iter->second;
}
return 1.0;
}
void AudioManager::SetEncodingApplication(int application) {
std::lock_guard<std::mutex> _(m_enc_mutex);
int prev_bitrate = 64000;
if (int err = opus_encoder_ctl(m_encoder, OPUS_GET_BITRATE(&prev_bitrate)); err != OPUS_OK) {
spdlog::get("audio")->error("Failed to get old bitrate when reinitializing: {}", err);
}
opus_encoder_destroy(m_encoder);
int err = 0;
m_encoder = opus_encoder_create(48000, 2, application, &err);
if (err != OPUS_OK) {
spdlog::get("audio")->critical("opus_encoder_create failed: {}", err);
return;
}
if (int err = opus_encoder_ctl(m_encoder, OPUS_SET_BITRATE(prev_bitrate)); err != OPUS_OK) {
spdlog::get("audio")->error("Failed to set bitrate when reinitializing: {}", err);
}
}
int AudioManager::GetEncodingApplication() {
std::lock_guard<std::mutex> _(m_enc_mutex);
int temp = OPUS_APPLICATION_VOIP;
if (int err = opus_encoder_ctl(m_encoder, OPUS_GET_APPLICATION(&temp)); err != OPUS_OK) {
spdlog::get("audio")->error("opus_encoder_ctl(OPUS_GET_APPLICATION) failed: {}", err);
}
return temp;
}
void AudioManager::SetSignalHint(int signal) {
std::lock_guard<std::mutex> _(m_enc_mutex);
if (int err = opus_encoder_ctl(m_encoder, OPUS_SET_SIGNAL(signal)); err != OPUS_OK) {
spdlog::get("audio")->error("opus_encoder_ctl(OPUS_SET_SIGNAL) failed: {}", err);
}
}
int AudioManager::GetSignalHint() {
std::lock_guard<std::mutex> _(m_enc_mutex);
int temp = OPUS_AUTO;
if (int err = opus_encoder_ctl(m_encoder, OPUS_GET_SIGNAL(&temp)); err != OPUS_OK) {
spdlog::get("audio")->error("opus_encoder_ctl(OPUS_GET_SIGNAL) failed: {}", err);
}
return temp;
}
void AudioManager::SetBitrate(int bitrate) {
std::lock_guard<std::mutex> _(m_enc_mutex);
if (int err = opus_encoder_ctl(m_encoder, OPUS_SET_BITRATE(bitrate)); err != OPUS_OK) {
spdlog::get("audio")->error("opus_encoder_ctl(OPUS_SET_BITRATE) failed: {}", err);
}
}
int AudioManager::GetBitrate() {
std::lock_guard<std::mutex> _(m_enc_mutex);
int temp = 64000;
if (int err = opus_encoder_ctl(m_encoder, OPUS_GET_BITRATE(&temp)); err != OPUS_OK) {
spdlog::get("audio")->error("opus_encoder_ctl(OPUS_GET_BITRATE) failed: {}", err);
}
return temp;
}
void AudioManager::Enumerate() {
ma_device_info *pPlaybackDeviceInfo;
ma_uint32 playbackDeviceCount;
ma_device_info *pCaptureDeviceInfo;
ma_uint32 captureDeviceCount;
spdlog::get("audio")->debug("Enumerating devices");
if (ma_context_get_devices(
&m_context,
&pPlaybackDeviceInfo,
&playbackDeviceCount,
&pCaptureDeviceInfo,
&captureDeviceCount) != MA_SUCCESS) {
spdlog::get("audio")->error("Failed to enumerate devices");
return;
}
spdlog::get("audio")->debug("Found {} playback devices and {} capture devices", playbackDeviceCount, captureDeviceCount);
m_devices.SetDevices(pPlaybackDeviceInfo, playbackDeviceCount, pCaptureDeviceInfo, captureDeviceCount);
}
void AudioManager::OnCapturedPCM(const int16_t *pcm, ma_uint32 frames) {
if (m_opus_buffer == nullptr || !m_should_capture) return;
const double gain = m_capture_gain;
// i have a suspicion i can cast the const away... but i wont
std::vector<int16_t> new_pcm(pcm, pcm + frames * 2);
for (auto &val : new_pcm) {
const int32_t unclamped = static_cast<int32_t>(val * gain);
val = std::clamp(unclamped, INT16_MIN, INT16_MAX);
}
UpdateCaptureVolume(new_pcm.data(), frames);
static float idc[480];
static float rnnoise_input[480];
// take left channel
for (int i = 0; i < 480; i++) {
rnnoise_input[i] = static_cast<float>(pcm[i * 2]);
}
float prob = rnnoise_process_frame(m_rnnoise, idc, rnnoise_input);
if (prob < m_capture_gate) return;
m_enc_mutex.lock();
int payload_len = opus_encode(m_encoder, new_pcm.data(), 480, static_cast<unsigned char *>(m_opus_buffer), 1275);
m_enc_mutex.unlock();
if (payload_len < 0) {
spdlog::get("audio")->error("encoding error: {}", payload_len);
} else {
m_signal_opus_packet.emit(payload_len);
}
}
void AudioManager::UpdateReceiveVolume(uint32_t ssrc, const int16_t *pcm, int frames) {
std::lock_guard<std::mutex> _(m_vol_mtx);
auto &meter = m_volumes[ssrc];
for (int i = 0; i < frames * 2; i += 2) {
const int amp = std::abs(pcm[i]);
meter = std::max(meter, std::abs(amp) / 32768.0);
}
}
void AudioManager::UpdateCaptureVolume(const int16_t *pcm, ma_uint32 frames) {
for (ma_uint32 i = 0; i < frames * 2; i += 2) {
const int amp = std::abs(pcm[i]);
m_capture_peak_meter = std::max(m_capture_peak_meter.load(std::memory_order_relaxed), amp);
}
}
bool AudioManager::DecayVolumeMeters() {
m_capture_peak_meter -= 600;
if (m_capture_peak_meter < 0) m_capture_peak_meter = 0;
std::lock_guard<std::mutex> _(m_vol_mtx);
for (auto &[ssrc, meter] : m_volumes) {
meter -= 0.01;
if (meter < 0.0) meter = 0.0;
}
return true;
}
bool AudioManager::OK() const {
return m_ok;
}
double AudioManager::GetCaptureVolumeLevel() const noexcept {
return m_capture_peak_meter / 32768.0;
}
double AudioManager::GetSSRCVolumeLevel(uint32_t ssrc) const noexcept {
std::lock_guard<std::mutex> _(m_vol_mtx);
if (const auto it = m_volumes.find(ssrc); it != m_volumes.end()) {
return it->second;
}
return 0.0;
}
AudioDevices &AudioManager::GetDevices() {
return m_devices;
}
uint32_t AudioManager::GetRTPTimestamp() const noexcept {
return m_rtp_timestamp;
}
AudioManager::type_signal_opus_packet AudioManager::signal_opus_packet() {
return m_signal_opus_packet;
}
#endif