//! this example positions buffers adjacently and uses an ASYMMETRIC coil winding. //! v.s. the fourth prototype, it changes the couplings in an attempt to reduce unwanted //! clock -> mem2 coupling use coremem::{Driver, mat, meas, SpirvDriver}; use coremem::geom::{region, Cube, Dilate, Memoize, Meters, Region, Spiral, SwapYZ, Torus, Translate, Wrap}; use coremem::render::CsvRenderer; use coremem::stim::{CurlStimulus, Gated, Sinusoid1, TimeVarying1 as _}; use coremem::sim::units::{Seconds, Frame, Time as _}; use log::{info, warn}; #[allow(unused)] use coremem::geom::{Coord as _, Region as _}; #[derive(Debug, Copy, Clone, PartialEq, Eq)] enum PulseType { Square, Sine } /// Return just the extrema of some collection fn extrema(mut meas: Vec) -> Vec { let mut i = 0; while i + 2 < meas.len() { let (prev, cur, next) = (meas[i], meas[i+1], meas[i+2]); if (prev <= cur && cur <= next) || (prev >= cur && cur >= next) { meas.remove(i+1); } else { i += 1; } } meas } /// Return the (signed) peak magnitude and stable value fn significa(meas: Vec) -> (f32, f32) { let peak = meas.iter().max_by(|a, b| a.abs().partial_cmp(&b.abs()).unwrap()).copied().unwrap_or_default(); let stable = meas.last().copied().unwrap_or_default(); (peak, stable) } #[derive(Copy, Clone, Debug)] struct Params { dry_run: bool, feat_size: f32, buffer_xy: f32, buffer_z: f32, boundary_xy: f32, boundary_z: f32, ferro_major: f32, ferro_minor: f32, ferro_buffer: f32, // horizontal space between ferros, wire_minor: f32, wire_wrap_minor: f32, // 2x wire_wrap_minor + feat_size must be < ferro_buffer wire_set_major: f32, wire_wrap_dilation: f32, wire_wrap_iters: usize, wraps1: f32, wrap1_coverage: f32, wraps2: f32, wrap2_coverage: f32, wire_conductivity: f32, peak_set_current: f32, peak_clock_current: f32, set_duration: f32, clock_duration: f32, clock_type: PulseType, pre_time: f32, // how long between set and clock post_time: f32, // how long to wait after the clock dump_frames: Option, } struct Geometries { dim: Meters, ferro1_region: Torus, ferro2_region: Torus, set1_region: Torus, set2_region: Torus, coupling_region: region::Union, coupling_wire_top: Cube, coupling_wire_bot: Cube, wrap1_len: f32, wrap2_len: f32, } #[derive(Clone, Debug, Default)] struct Results { m1_peak: f32, m2_peak: f32, m1_stable: f32, m2_stable: f32, h1_peak: f32, h2_peak: f32, h1_stable: f32, h2_stable: f32, iset_peak: f32, icoupling_peak: f32, peak_m_ratio: f32, stable_m_ratio: f32, t: f32, } fn derive_geometries(p: Params) -> Option { use std::f32::consts::PI; let feat_sizes = Meters::new(p.feat_size, p.feat_size, p.feat_size); let width = 4.0*p.ferro_major + 2.0*(p.buffer_xy + p.boundary_xy + p.wire_set_major + p.wire_minor) + p.ferro_buffer; let height = 2.0*(p.ferro_major + p.ferro_minor + 4.0*p.wire_wrap_minor + 12.0*p.feat_size + p.buffer_xy + p.boundary_xy); let depth = 2.0*(p.wire_set_major.max(4.0*p.wire_wrap_minor + p.ferro_minor + p.feat_size) + p.wire_minor + p.buffer_z + p.boundary_z); let dim = Meters::new(width, height, depth); let ferro1_center = Meters::new( p.buffer_xy + p.boundary_xy + p.wire_set_major + p.wire_minor + p.ferro_major, p.buffer_xy + p.boundary_xy + p.ferro_major + p.ferro_minor + 4.0*p.wire_wrap_minor + 12.0*p.feat_size, 0.5*depth, // buffer_z + boundary_z + wire_set_major + wire_minor ); let ferro2_center = ferro1_center + Meters::new(2.0*p.ferro_major + p.ferro_buffer, 0.0, 0.0); let ferro_center = (ferro1_center + ferro2_center)*0.5; // reserve the left/right locations for the SET wires. let set1_center = ferro1_center - Meters::new_x(p.ferro_major); let set2_center = ferro2_center + Meters::new_x(p.ferro_major); let ferro1_region = Torus::new_xy(ferro1_center, p.ferro_major, p.ferro_minor); let ferro2_region = Torus::new_xy(ferro2_center, p.ferro_major, p.ferro_minor); let set1_region = Torus::new_xz(set1_center, p.wire_set_major, p.wire_minor); let set2_region = Torus::new_xz(set2_center, p.wire_set_major, p.wire_minor); let wrap1_rate = 2.0*p.wrap1_coverage/p.wraps1; let coupling_region1 = Memoize::new(Dilate::new( Wrap::new_about( Translate::new( SwapYZ::new(region::and( Spiral::new(p.ferro_minor + 2.0*p.wire_wrap_minor + p.feat_size, p.wire_wrap_minor, wrap1_rate), Cube::new(Meters::new(-1.0, -1.0, -p.wrap1_coverage), Meters::new(1.0, 1.0, p.wrap1_coverage)) )), ferro1_center + Meters::new(1.0*p.ferro_major, 0.0, 0.0), ), 1.0, // one half-rev => y=1.0 ferro1_center, ), p.wire_wrap_dilation, p.wire_wrap_dilation / (p.wire_wrap_iters as f32), )); let wrap2_rate = 2.0*p.wrap2_coverage/p.wraps2; let coupling_region2 = Memoize::new(Dilate::new( Wrap::new_about( Translate::new( SwapYZ::new(region::and_not( Spiral::new(p.ferro_minor + 2.0*p.wire_wrap_minor + p.feat_size, p.wire_wrap_minor, wrap2_rate), Cube::new(Meters::new(-1.0, -1.0, -1.0 + p.wrap2_coverage), Meters::new(1.0, 1.0, 1.0 - p.wrap2_coverage)) )), ferro2_center + Meters::new_x(p.ferro_major), ), 1.0, // one half-rev => y=1.0 ferro2_center, ), p.wire_wrap_dilation, p.wire_wrap_dilation / (p.wire_wrap_iters as f32), )); let coupling_wire_top = Cube::new_centered( ferro_center - Meters::new_y(p.ferro_major + 4.0*p.wire_wrap_minor + 12.0*p.feat_size), Meters::new(p.ferro_buffer + 4.0*p.ferro_major + 4.0*p.feat_size, 2.0*p.feat_size, 2.0*p.feat_size) ); let coupling_wire_bot = Cube::new_centered( ferro_center + Meters::new_y(p.ferro_major + 4.0*p.wire_wrap_minor + 12.0*p.feat_size), Meters::new(p.ferro_buffer + 4.0*p.ferro_major + 4.0*p.feat_size, 2.0*p.feat_size, 2.0*p.feat_size) ); let wrap1_top = ferro1_center + Meters::new_x(p.ferro_major).rotate_z(-p.wrap1_coverage*PI); let wrap1_bot = ferro1_center + Meters::new_x(p.ferro_major).rotate_z(p.wrap1_coverage*PI); let wrap2_top = ferro2_center + Meters::new_x(p.ferro_major).rotate_z((1.0+p.wrap2_coverage)*PI); let wrap2_bot = ferro2_center + Meters::new_x(p.ferro_major).rotate_z((1.0-p.wrap2_coverage)*PI); let coupling_stub_top_left = Cube::new_including_negatives( wrap1_top + feat_sizes*2.0, wrap1_top.with_y(coupling_wire_top.bot()) - feat_sizes*2.0, ); let coupling_stub_bot_left = Cube::new_including_negatives( wrap1_bot - feat_sizes*2.0, wrap1_bot.with_y(coupling_wire_bot.top()) + feat_sizes*2.0, ); let coupling_stub_top_right = Cube::new_including_negatives( wrap2_top + feat_sizes*2.0, wrap2_top.with_y(coupling_wire_top.bot()) - feat_sizes*2.0, ); let coupling_stub_bot_right = Cube::new_including_negatives( wrap2_bot - feat_sizes*2.0, wrap2_bot.with_y(coupling_wire_bot.top()) + feat_sizes*2.0, ); let coupling_stubs = region::Union::new() .with(coupling_stub_top_left.clone()) .with(coupling_stub_top_right.clone()) .with(coupling_stub_bot_left.clone()) .with(coupling_stub_bot_right.clone()) ; let coupling_wires = region::Union::new() .with(coupling_wire_top.clone()) .with(coupling_wire_bot.clone()) .with(coupling_stubs.clone()) ; let coupling_region = region::Union::new() .with(coupling_region1.clone()) .with(coupling_region2.clone()) .with(coupling_wires.clone()) ; let wrap1_with_coupling = region::union( coupling_region1.clone(), coupling_wires.clone() ); let wrap2_with_coupling = region::union( coupling_region2.clone(), coupling_wires.clone() ); // show that the coupling top/bot wires are connected through the wrapping if !region::is_connected( &wrap1_with_coupling, coupling_wire_top.center(), coupling_wire_bot.center(), p.feat_size, ) { warn!("wrap1 not connected for params: {:?}", p); return None; } if !region::is_connected( &wrap2_with_coupling, coupling_wire_top.center(), coupling_wire_bot.center(), p.feat_size, ) { warn!("wrap2 not connected for params: {:?}", p); return None; } let wrap1_len = region::distance_to( &wrap1_with_coupling, coupling_stub_top_left.center().to_index(p.feat_size), coupling_stub_bot_left.center().to_index(p.feat_size), p.feat_size, ).unwrap(); let wrap2_len = region::distance_to( &wrap2_with_coupling, coupling_stub_top_right.center().to_index(p.feat_size), coupling_stub_bot_right.center().to_index(p.feat_size), p.feat_size, ).unwrap(); info!("wrap lengths: {}, {}", wrap1_len, wrap2_len); Some(Geometries { dim, ferro1_region, ferro2_region, set1_region, set2_region, coupling_region, coupling_wire_top, coupling_wire_bot, wrap1_len, wrap2_len, }) } fn run_sim(id: u32, p: Params, g: Geometries) -> Results { info!("run_sim {}: {:?}", id, p); let m_to_um = |m: f32| (m * 1e6).round() as u32; let feat_vol = p.feat_size * p.feat_size * p.feat_size; // mu_r=881.33, starting at H=25 to H=75. let ferro_mat = mat::MHPgram::new(25.0, 881.33, 44000.0); // let ferro_mat = mat::db::conductor(wire_conductivity); let wire_mat = mat::db::conductor(p.wire_conductivity); let mut driver: Driver<_> = Driver::new_spirv(g.dim, p.feat_size); driver.set_steps_per_stim(1000); driver.fill_region(&g.ferro1_region, ferro_mat); driver.fill_region(&g.ferro2_region, ferro_mat); driver.fill_region(&g.set1_region, wire_mat); driver.fill_region(&g.set2_region, wire_mat); driver.fill_region(&g.coupling_region, wire_mat); info!("boundary: {}um; {}um", m_to_um(p.boundary_xy), m_to_um(p.boundary_z)); info!("size: {:?}", g.dim); info!("ferro1: {:?}", g.ferro1_region.center()); info!("ferro2: {:?}", g.ferro2_region.center()); driver.add_classical_boundary(Meters::new(p.boundary_xy, p.boundary_xy, p.boundary_z)); // assert!(driver.test_region_filled(&g.ferro1_region, ferro_mat)); // assert!(driver.test_region_filled(&g.ferro2_region, ferro_mat)); // assert!(driver.test_region_filled(&g.set1_region, wire_mat)); // assert!(driver.test_region_filled(&g.set2_region, wire_mat)); // assert!(driver.test_region_filled(&g.coupling_region, wire_mat)); let add_drive_sine_pulse = |driver: &mut SpirvDriver, region: &Torus, start: f32, duration: f32, amp: f32| { let wave = Sinusoid1::from_wavelength(amp, duration * 2.0) .half_cycle() .shifted(start); driver.add_stimulus(CurlStimulus::new( region.clone(), wave.clone(), region.center(), region.axis() )); }; let add_drive_square_pulse = |driver: &mut SpirvDriver, region: &Torus, start: f32, duration: f32, amp: f32| { let wave = Gated::new(amp, start, start+duration); driver.add_stimulus(CurlStimulus::new( region.clone(), wave.clone(), region.center(), region.axis() )); }; let add_drive_step = |driver: &mut SpirvDriver, region: &Torus, start: f32, amp: f32| { add_drive_square_pulse(driver, region, start, 1.0, amp); }; let add_drive_pulse = |ty: PulseType, driver: &mut SpirvDriver, region: &Torus, start: f32, duration: f32, amp: f32| { match ty { PulseType::Sine => add_drive_sine_pulse(driver, region, start, duration, amp), PulseType::Square => add_drive_square_pulse(driver, region, start, duration, amp), } }; // J=\sigma E // dJ/dt = \sigma dE/dT // dE/dt = dJ/dt / \sigma // dE/dt = dI/dt / (A*\sigma) // if I = k*sin(w t) then dE/dt = k*w cos(w t) / (A*\sigma) // i.e. dE/dt is proportional to I/(A*\sigma), multiplied by w (or, divided by wavelength) let peak_set = p.peak_set_current / feat_vol / (g.set1_region.cross_section() * p.wire_conductivity); let peak_clock = p.peak_clock_current / feat_vol / (g.set1_region.cross_section() * p.wire_conductivity); // SET cores add_drive_sine_pulse(&mut driver, &g.set1_region, 0.01*p.set_duration, p.set_duration, -peak_set); add_drive_sine_pulse(&mut driver, &g.set2_region, 0.01*p.set_duration, p.set_duration, peak_set); // CLEAR core1 add_drive_pulse(p.clock_type, &mut driver, &g.set1_region, p.set_duration + p.pre_time, p.clock_duration, peak_clock); // add_drive_step(&mut driver, &set1_region, set_duration + pre_time, peak_clock); let duration = Seconds(p.set_duration + p.pre_time + p.clock_duration + p.post_time) .to_frame(driver.timestep()) .round_up(32000); driver.add_measurement(meas::Volume::new("mem1", g.ferro1_region.clone())); driver.add_measurement(meas::MagneticLoop::new("mem1", g.ferro1_region.clone())); driver.add_measurement(meas::Volume::new("mem2", g.ferro2_region.clone())); driver.add_measurement(meas::MagneticLoop::new("mem2", g.ferro2_region.clone())); driver.add_measurement(meas::CurrentLoop::new("set1", g.set1_region.clone())); driver.add_measurement(meas::Power::new("set1", g.set1_region.clone())); driver.add_measurement(meas::CurrentLoop::new("set2", g.set2_region.clone())); // driver.add_measurement(meas::CurrentLoop::new("coupling1", coupling_region1.clone())); // driver.add_measurement(meas::CurrentLoop::new("coupling2", coupling_region2.clone())); driver.add_measurement(meas::Current::new("couplingtop", g.coupling_wire_top.clone())); driver.add_measurement(meas::Current::new("couplingbot", g.coupling_wire_bot.clone())); let base = format!("buffer5-{}", id); let prefix = format!("out/{}/{}-{}-{}setmA-{}setps-{}clkmA-{}clkps-{}um-{}ferromaj-{}:{}wraps-{}:{}cov-{:?}clk", base, base, *driver.size(), (p.peak_set_current * 1e3).round() as i64, (p.set_duration * 1e12).round() as i64, (p.peak_clock_current * 1e3).round() as i64, (p.clock_duration * 1e12).round() as i64, (p.feat_size * 1e6).round() as i64, p.ferro_major, p.wraps1, p.wraps2, p.wrap1_coverage, p.wrap2_coverage, p.clock_type, ); if p.dry_run { info!("bailing (dry run): {}", prefix); return Results::default(); } let _ = std::fs::create_dir_all(&prefix); driver.add_state_file(&*format!("{}/state.bc", prefix), 16000); driver.add_serializer_renderer(&*format!("{}/frame-", prefix), 32000, p.dump_frames); let meas_csv = format!("{}/meas.csv", prefix); let meas_sparse_csv = format!("{}/meas-sparse.csv", prefix); driver.add_csv_renderer(&*meas_csv, 200, None); driver.add_csv_renderer(&*meas_sparse_csv, 8000, None); driver.step_until(duration); let (m1_peak, m1_stable) = significa(CsvRenderer::new(&*meas_sparse_csv).read_column_as_f32("M(mem1)")); let (m2_peak, m2_stable) = significa(CsvRenderer::new(&*meas_sparse_csv).read_column_as_f32("M(mem2)")); let (h1_peak, h1_stable) = significa(CsvRenderer::new(&*meas_sparse_csv).read_column_as_f32("H(mem1)")); let (h2_peak, h2_stable) = significa(CsvRenderer::new(&*meas_sparse_csv).read_column_as_f32("H(mem2)")); let (iset_peak, _iset_stable) = significa(CsvRenderer::new(&*meas_sparse_csv).read_column_as_f32("I(set1)")); let (icoupling_peak, _icoupling_stable) = significa(CsvRenderer::new(&*meas_sparse_csv).read_column_as_f32("Imag/cell(couplingtop)")); let res = Results { m1_peak, m2_peak, m1_stable, m2_stable, h1_peak, h2_peak, h1_stable, h2_stable, iset_peak, icoupling_peak, peak_m_ratio: m2_peak / m1_peak, stable_m_ratio: m2_stable / m1_stable, t: driver.time(), }; std::fs::write( format!("{}/results.txt", prefix), format!("{:#?}\n", res), ).unwrap(); info!("completed sim: {}", prefix); res } fn main() { coremem::init_logging(); let i = 62; let dry_run = false; let mut variants = Vec::new(); for ferro_major in [1360e-6, 2320e-6, 1680e-6] { // 10e-9 is enough to see m2 peak, 275e-9 for it to stabilize for post_time in [10e-9, 275e-9] { for peak_clock_current in [400.0, 100.0, 1600.0, 25.0] { for clock_type in [PulseType::Square, PulseType::Sine] { for wrap1_density in [1.0, 0.5, 0.2] { for wrap2_density in [1.0, 0.5, 0.2, 0.0] { for (wrap1_cov, wrap2_cov) in [ (0.8, 0.8), (0.8, 0.25), (0.25, 0.8), ] { variants.push(( peak_clock_current, post_time, clock_type, ferro_major, wrap1_cov, wrap2_cov, wrap1_density, wrap2_density )); } } } } } } } for (peak_clock_current, post_time, clock_type, ferro_major, wrap1_coverage, wrap2_coverage, wrap1_density, wrap2_density) in variants { info!("{}A {}s {}m {}:{}cov {}:{}density", peak_clock_current, post_time, ferro_major, wrap1_coverage, wrap2_coverage, wrap1_density, wrap2_density); let base_params = Params { dry_run, feat_size: 40e-6f32, buffer_xy: 160e-6, buffer_z: 160e-6, boundary_xy: 320e-6, boundary_z: 320e-6, ferro_major, ferro_minor: 60e-6, ferro_buffer: 1320e-6, wire_minor: 40e-6, wire_wrap_minor: 50e-6, wire_set_major: 200e-6, wire_wrap_dilation: 50e-6, wire_wrap_iters: 3, wraps1: 4.0, wraps2: 4.0, wrap1_coverage, wrap2_coverage, wire_conductivity: 5e6f32, peak_set_current: 60.0, peak_clock_current, set_duration: 0e-9, clock_duration: 25e-9, clock_type, pre_time: 1e-9, post_time, dump_frames: Some(256000), }; let wraps1_max = (1..25) .into_iter() .filter_map(|wraps1| { let params = Params { wraps1: (wraps1 * 4) as f32, ..base_params }; let geoms = derive_geometries(params.clone())?; Some((params, geoms)) }).max_by(|(_p1, geoms1), (_p2, geoms2)| geoms1.wrap1_len.partial_cmp(&geoms2.wrap1_len).unwrap() ).unwrap() .0.wraps1; let wraps1 = (wraps1_max * wrap1_density / 4.0).round().max(1.0) * 4.0; let wraps2_max = (1..25) .into_iter() .filter_map(|wraps2| { let params = Params { wraps2: (wraps2 * 4) as f32, ..base_params }; let geoms = derive_geometries(params.clone())?; Some((params, geoms)) }).max_by(|(_p1, geoms1), (_p2, geoms2)| geoms1.wrap2_len.partial_cmp(&geoms2.wrap2_len).unwrap() ).unwrap() .0.wraps2; let wraps2 = (wraps2_max * wrap2_density / 4.0).round().max(1.0) * 4.0; let params = Params { wraps1, wraps2, ..base_params }; let geoms = derive_geometries(params.clone()).unwrap(); run_sim(i, params, geoms); } }