Files
iio-sensor-proxy/iio-sensor-proxy.c
2014-07-26 16:31:57 +02:00

1090 lines
26 KiB
C

/*
* Modified from industrialio buffer test code, and Lenovo Yoga (2 Pro) orientation helper
* Copyright (c) 2008 Jonathan Cameron
* Copyright (c) 2014 Peter F. Patel-Schneider
* Copyright (c) 2011, 2014 Bastien Nocera <hadess@hadess.net>
*
* Every 700 msec, read data from an IIO accelerometer, and
* from the accelerometer values, as well as the previous
* orientation, calculate the device's new orientation.
*
* Possible values are:
* * undefined
* * normal
* * bottom-up
* * left-up
* * right-up
*
* The property will be persistent across sessions, and the new
* orientations can be deducted from the previous one (it allows
* for a threshold for switching between opposite ends of the
* orientation).
*
* orientation_calc() from the sensorfw package
* Copyright (C) 2009-2010 Nokia Corporation
* Authors:
* Üstün Ergenoglu <ext-ustun.ergenoglu@nokia.com>
* Timo Rongas <ext-timo.2.rongas@nokia.com>
* Lihan Guo <lihan.guo@digia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
*/
#define _GNU_SOURCE
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#include <gudev/gudev.h>
#include "uinput.h"
typedef enum {
ORIENTATION_UNDEFINED,
ORIENTATION_NORMAL,
ORIENTATION_BOTTOM_UP,
ORIENTATION_LEFT_UP,
ORIENTATION_RIGHT_UP
} OrientationUp;
static const char *orientations[] = {
"undefined",
"normal",
"bottom-up",
"left-up",
"right-up",
NULL
};
#define ORIENTATION_UP_UP ORIENTATION_NORMAL
#define RADIANS_TO_DEGREES 180.0/M_PI
#define SAME_AXIS_LIMIT 5
#define THRESHOLD_LANDSCAPE 35
#define THRESHOLD_PORTRAIT 35
static const char *
orientation_to_string (OrientationUp o)
{
return orientations[o];
}
#if 0
static OrientationUp
string_to_orientation (const char *orientation)
{
int i;
if (orientation == NULL)
return ORIENTATION_UNDEFINED;
for (i = 0; orientations[i] != NULL; i++) {
if (g_str_equal (orientation, orientations[i]))
return i;
}
return ORIENTATION_UNDEFINED;
}
#endif
static OrientationUp
orientation_calc (OrientationUp prev,
int x, int y, int z)
{
int rotation;
OrientationUp ret = prev;
/* Portrait check */
rotation = round(atan((double) x / sqrt(y * y + z * z)) * RADIANS_TO_DEGREES);
if (abs(rotation) > THRESHOLD_PORTRAIT) {
ret = (rotation < 0) ? ORIENTATION_LEFT_UP : ORIENTATION_RIGHT_UP;
/* Some threshold to switching between portrait modes */
if (prev == ORIENTATION_LEFT_UP || prev == ORIENTATION_RIGHT_UP) {
if (abs(rotation) < SAME_AXIS_LIMIT) {
ret = prev;
}
}
} else {
/* Landscape check */
rotation = round(atan((double) y / sqrt(x * x + z * z)) * RADIANS_TO_DEGREES);
if (abs(rotation) > THRESHOLD_LANDSCAPE) {
ret = (rotation < 0) ? ORIENTATION_BOTTOM_UP : ORIENTATION_NORMAL;
/* Some threshold to switching between landscape modes */
if (prev == ORIENTATION_BOTTOM_UP || prev == ORIENTATION_NORMAL) {
if (abs(rotation) < SAME_AXIS_LIMIT) {
ret = prev;
}
}
}
}
return ret;
}
/**
* iio_channel_info - information about a given channel
* @name: channel name
* @scale: scale factor to be applied for conversion to si units
* @offset: offset to be applied for conversion to si units
* @index: the channel index in the buffer output
* @bytes: number of bytes occupied in buffer output
* @mask: a bit mask for the raw output
* @is_signed: is the raw value stored signed
* @enabled: is this channel enabled
**/
typedef struct {
char *name;
char *generic_name;
float scale;
float offset;
unsigned index;
unsigned bytes;
unsigned bits_used;
unsigned shift;
uint64_t mask;
unsigned be;
unsigned is_signed;
unsigned enabled;
unsigned location;
} iio_channel_info;
typedef struct {
GMainLoop *loop;
char *dev_dir_name;
char *trigger_name;
char *dev_path;
int device_id;
int channels_count;
iio_channel_info **channels;
int scan_size;
int uinput;
int accel_x, accel_y, accel_z;
GUdevClient *client;
GUdevDevice *uinput_dev;
OrientationUp previous_orientation;
} OrientationData;
static char *
iioutils_break_up_name (const char *name)
{
char **items, *ret;
guint i;
items = g_strsplit (name, "_", -1);
for (i = 0; items[i] != NULL; i++) {
if (items[i + 1] == NULL) {
g_clear_pointer (&items[i], g_free);
break;
}
}
ret = g_strjoinv ("_", items);
g_strfreev (items);
return ret;
}
/**
* iioutils_get_type() - find and process _type attribute data
* @is_signed: output whether channel is signed
* @bytes: output how many bytes the channel storage occupies
* @mask: output a bit mask for the raw data
* @be: big endian
* @device_dir: the iio device directory
* @name: the channel name
**/
static gboolean
iioutils_get_type (unsigned *is_signed,
unsigned *bytes,
unsigned *bits_used,
unsigned *shift,
uint64_t *mask,
unsigned *be,
const char *device_dir,
const char *name,
const char *generic_name)
{
int ret;
char *builtname;
char *filename;
char signchar, endianchar;
unsigned padint;
FILE *sysfsfp;
builtname = g_strdup_printf ("%s_type", name);
filename = g_build_filename (device_dir, "scan_elements", builtname, NULL);
g_free (builtname);
sysfsfp = fopen (filename, "r");
if (sysfsfp == NULL) {
builtname = g_strdup_printf ("%s_type", generic_name);
filename = g_build_filename (device_dir, "scan_elements", builtname, NULL);
g_free (builtname);
sysfsfp = fopen (filename, "r");
if (sysfsfp == NULL) {
g_free (filename);
return FALSE;
}
}
ret = fscanf (sysfsfp,
"%ce:%c%u/%u>>%u",
&endianchar,
&signchar,
bits_used,
&padint, shift);
if (ret < 0) {
g_warning ("Failed to pass scan type description for %s", filename);
fclose (sysfsfp);
g_free (filename);
return FALSE;
}
fclose (sysfsfp);
*be = (endianchar == 'b');
*bytes = padint / 8;
if (*bits_used == 64)
*mask = ~0;
else
*mask = (1 << *bits_used) - 1;
if (signchar == 's')
*is_signed = 1;
else
*is_signed = 0;
g_debug ("Got type for %s: is signed: %d, bytes: %d, bits_used: %d, shift: %d, mask: 0x%lX, be: %d",
name, *is_signed, *bytes, *bits_used, *shift, *mask, *be);
g_free (filename);
return TRUE;
}
static int
iioutils_get_param_float (float *output,
const char *param_name,
const char *device_dir,
const char *name,
const char *generic_name)
{
FILE *sysfsfp;
char *builtname, *filename;
int ret = 0;
builtname = g_strdup_printf ("%s_%s", name, param_name);
filename = g_build_filename (device_dir, builtname, NULL);
g_free (builtname);
sysfsfp = fopen (filename, "r");
if (sysfsfp) {
fscanf (sysfsfp, "%f", output);
fclose (sysfsfp);
g_free (filename);
return 0;
}
g_free (filename);
builtname = g_strdup_printf ("%s_%s", generic_name, param_name);
filename = g_build_filename (device_dir, builtname, NULL);
g_free (builtname);
sysfsfp = fopen (filename, "r");
if (sysfsfp) {
fscanf (sysfsfp, "%f", output);
fclose (sysfsfp);
} else {
ret = -errno;
g_warning ("Failed to read float from %s", filename);
}
g_free (filename);
return ret;
}
static void
channel_info_free (iio_channel_info *ci)
{
g_free (ci->name);
g_free (ci->generic_name);
g_free (ci);
}
/* build_channel_array() - function to figure out what channels are present */
static iio_channel_info **
build_channel_array (const char *device_dir,
int *counter)
{
GDir *dp;
FILE *sysfsfp;
int ret;
const char *name;
char *scan_el_dir;
GPtrArray *array;
iio_channel_info **ret_array;
int i;
*counter = 0;
scan_el_dir = g_build_filename (device_dir, "scan_elements", NULL);
dp = g_dir_open (scan_el_dir, 0, NULL);
if (dp == NULL) {
ret = -errno;
g_free (scan_el_dir);
return NULL;
}
array = g_ptr_array_new_full (0, (GDestroyNotify) channel_info_free);
while ((name = g_dir_read_name (dp)) != NULL) {
if (g_str_has_suffix (name, "_en")) {
char *filename, *index_name;
iio_channel_info *current;
filename = g_build_filename (scan_el_dir, name, NULL);
sysfsfp = fopen (filename, "r");
if (sysfsfp == NULL) {
g_free (filename);
continue;
}
fscanf (sysfsfp, "%d", &ret);
fclose (sysfsfp);
if (!ret) {
g_free (filename);
continue;
}
g_free (filename);
current = g_new0 (iio_channel_info, 1);
current->scale = 1.0;
current->offset = 0;
current->name = g_strndup (name, strlen(name) - strlen("_en"));
current->generic_name = iioutils_break_up_name (current->name);
index_name = g_strdup_printf ("%s_index", current->name);
filename = g_build_filename (scan_el_dir, index_name, NULL);
g_free (index_name);
sysfsfp = fopen (filename, "r");
fscanf (sysfsfp, "%u", &current->index);
fclose (sysfsfp);
g_free (filename);
/* Find the scale */
ret = iioutils_get_param_float (&current->scale,
"scale",
device_dir,
current->name,
current->generic_name);
if (ret < 0)
goto error;
ret = iioutils_get_param_float (&current->offset,
"offset",
device_dir,
current->name,
current->generic_name);
if (ret < 0)
goto error;
ret = iioutils_get_type (&current->is_signed,
&current->bytes,
&current->bits_used,
&current->shift,
&current->mask,
&current->be,
device_dir,
current->name,
current->generic_name);
if (!ret) {
g_warning ("Could not parse name %s, generic name %s",
current->name, current->generic_name);
} else {
g_ptr_array_add (array, current);
}
}
}
g_dir_close (dp);
g_free (scan_el_dir);
*counter = array->len;
ret_array = (iio_channel_info **) g_ptr_array_free (array, FALSE);
for (i = 0; i < *counter; i++) {
iio_channel_info *ci = ret_array[i];
g_debug ("Built channel array for %s: is signed: %d, bytes: %d, bits_used: %d, shift: %d, mask: 0x%lX, be: %d",
ci->name, ci->is_signed, ci->bytes, ci->bits_used, ci->shift, ci->mask, ci->be);
}
return ret_array;
error:
g_ptr_array_free (array, TRUE);
g_dir_close (dp);
g_free (scan_el_dir);
return NULL;
}
static int
_write_sysfs_int (const char *filename,
const char *basedir,
int val,
int verify,
int type,
int val2)
{
int ret = 0;
FILE *sysfsfp;
int test;
char *temp;
temp = g_build_filename (basedir, filename, NULL);
sysfsfp = fopen(temp, "w");
if (sysfsfp == NULL) {
g_warning ("Could not open for write '%s'", temp);
ret = -errno;
goto error_free;
}
if (type)
fprintf(sysfsfp, "%d %d", val, val2);
else
fprintf(sysfsfp, "%d", val);
fclose(sysfsfp);
if (verify) {
sysfsfp = fopen(temp, "r");
if (sysfsfp == NULL) {
g_warning ("Could not open for read '%s'", temp);
ret = -errno;
goto error_free;
}
fscanf(sysfsfp, "%d", &test);
if (test != val) {
g_warning ("Possible failure in int write %d to %s",
val, temp);
ret = -1;
}
fclose(sysfsfp);
}
error_free:
g_free (temp);
return ret;
}
static int write_sysfs_int(const char *filename, const char *basedir, int val) {
return _write_sysfs_int(filename, basedir, val, 0, 0, 0);
}
static int write_sysfs_int_and_verify(char *filename, char *basedir, int val) {
return _write_sysfs_int(filename, basedir, val, 1, 0, 0);
}
static int
_write_sysfs_string (char *filename,
char *basedir,
char *val,
int verify)
{
int ret = 0;
FILE *sysfsfp;
char *temp;
temp = g_build_filename (basedir, filename, NULL);
sysfsfp = fopen (temp, "w");
if (sysfsfp == NULL) {
ret = -errno;
goto error_free;
}
fprintf(sysfsfp, "%s", val);
fclose(sysfsfp);
/* Verify? */
if (!verify)
goto error_free;
sysfsfp = fopen(temp, "r");
if (sysfsfp == NULL) {
ret = -errno;
goto error_free;
}
fscanf(sysfsfp, "%s", temp);
if (strcmp(temp, val) != 0) {
g_warning ("Possible failure in string write of %s Should be %s written to %s\\%s\n",
temp, val, basedir, filename);
ret = -1;
}
fclose(sysfsfp);
error_free:
g_free(temp);
return ret;
}
/**
* write_sysfs_string_and_verify() - string write, readback and verify
* @filename: name of file to write to
* @basedir: the sysfs directory in which the file is to be found
* @val: the string to write
**/
static int write_sysfs_string_and_verify(char *filename, char *basedir, char *val) {
return _write_sysfs_string(filename, basedir, val, 1);
}
static int write_sysfs_string(char *filename, char *basedir, char *val) {
return _write_sysfs_string(filename, basedir, val, 0);
}
typedef struct SensorData_s {
ssize_t read_size;
char* data;
} SensorData;
/**
* size_from_channelarray() - calculate the storage size of a scan
* @channels: the channel info array
* @num_channels: number of channels
*
* Has the side effect of filling the channels[i].location values used
* in processing the buffer output.
**/
static int
size_from_channelarray (iio_channel_info **channels,
int num_channels)
{
int bytes = 0;
int i = 0;
while (i < num_channels) {
if (bytes % channels[i]->bytes == 0)
channels[i]->location = bytes;
else
channels[i]->location = bytes - bytes % channels[i]->bytes
+ channels[i]->bytes;
bytes = channels[i]->location + channels[i]->bytes;
i++;
}
return bytes;
}
static int
prepare_output (OrientationData *or_data,
char *dev_dir_name,
char *trigger_name,
int (*callback)(SensorData, OrientationData *)) {
int ret;
SensorData data;
int fp, buf_len = 127;
data.data = g_malloc(or_data->scan_size * buf_len);
/* Attempt to open non blocking to access dev */
fp = open (or_data->dev_path, O_RDONLY | O_NONBLOCK);
if (fp == -1) { /* If it isn't there make the node */
g_warning ("Failed to open %s : %s", or_data->dev_path, strerror(errno));
ret = -errno;
goto bail;
}
/* Actually read the data */
data.read_size = read (fp, data.data, buf_len * or_data->scan_size);
if (data.read_size == -EAGAIN) {
g_debug ("No new data available");
} else {
ret = callback(data, or_data);
}
close(fp);
bail:
g_free(data.data);
return ret;
}
/**
* enable_sensors: enable all the sensors in a device
* @device_dir: the IIO device directory in sysfs
* @
**/
static gboolean
enable_sensors (GUdevDevice *dev,
int enable)
{
GDir *dir;
char *device_dir;
const char *name;
gboolean ret = TRUE;
device_dir = g_build_filename (g_udev_device_get_sysfs_path (dev), "scan_elements", NULL);
dir = g_dir_open (device_dir, 0, NULL);
if (!dir) {
g_free (device_dir);
return FALSE;
}
while ((name = g_dir_read_name (dir))) {
char *path;
if (g_str_has_suffix (name, "_en") == FALSE)
continue;
/* Already enabled? */
path = g_strdup_printf ("scan_elements/%s", name);
if (g_udev_device_get_sysfs_attr_as_boolean (dev, path)) {
g_free (path);
continue;
}
g_free (path);
/* Enable */
if (write_sysfs_int (name, device_dir, enable) < 0) {
g_warning ("Could not enable sensor %s/%s", device_dir, name);
ret = FALSE;
continue;
}
g_debug ("Enabled sensor %s/%s", device_dir, name);
}
g_dir_close (dir);
g_free (device_dir);
return ret;
}
static gboolean
enable_ring_buffer (OrientationData *data)
{
int ret;
/* Setup ring buffer parameters */
ret = write_sysfs_int("buffer/length", data->dev_dir_name, 128);
if (ret < 0)
return FALSE;
/* Enable the buffer */
ret = write_sysfs_int_and_verify("buffer/enable", data->dev_dir_name, 1);
if (ret < 0) {
printf("Unable to enable the buffer %d\n", ret);
return FALSE;
}
return TRUE;
}
static void
disable_ring_buffer (OrientationData *data)
{
/* Stop the buffer */
write_sysfs_int ("buffer/enable", data->dev_dir_name, 0);
/* Disconnect the trigger - just write a dummy name. */
write_sysfs_string ("trigger/current_trigger", data->dev_dir_name, "NULL");
}
static gboolean
enable_trigger (OrientationData *data)
{
int ret;
/* Set the device trigger to be the data ready trigger */
ret = write_sysfs_string_and_verify("trigger/current_trigger",
data->dev_dir_name, data->trigger_name);
if (ret < 0) {
g_warning ("Failed to write current_trigger file %s", g_strerror(-ret));
return FALSE;
}
return TRUE;
}
/**
* process_scan_1() - get an integer value for a particular channel
* @data: pointer to the start of the scan
* @channels: information about the channels. Note
* size_from_channelarray must have been called first to fill the
* location offsets.
* @num_channels: number of channels
* ch_name: name of channel to get
* ch_val: value for the channel
* ch_present: whether the channel is present
**/
static void
process_scan_1 (char *data,
iio_channel_info **channels,
int num_channels,
char *ch_name,
int *ch_val,
gboolean *ch_present)
{
int k;
for (k = 0; k < num_channels; k++) {
if (strcmp (channels[k]->name, ch_name) != 0)
continue;
switch (channels[k]->bytes) {
/* only a few cases implemented so far */
case 4:
if (!channels[k]->is_signed) {
uint32_t val = *(uint32_t *) (data + channels[k]->location);
val = val >> channels[k]->shift;
if (channels[k]->bits_used < 32) val &= ((uint32_t) 1 << channels[k]->bits_used) - 1;
*ch_val = (int) val;
*ch_present = TRUE;
} else {
int32_t val = *(int32_t *) (data + channels[k]->location);
val = val >> channels[k]->shift;
if (channels[k]->bits_used < 32) val &= ((uint32_t) 1 << channels[k]->bits_used) - 1;
val = (int32_t) (val << (32 - channels[k]->bits_used)) >> (32 - channels[k]->bits_used);
*ch_val = (int) val;
*ch_present = TRUE;
}
break;
case 2:
case 8:
g_error ("Process %d bytes channels not supported yet", channels[k]->bytes);
default:
g_assert_not_reached ();
break;
}
}
}
static int
process_scan (SensorData data, OrientationData *or_data)
{
OrientationUp orientation = or_data->previous_orientation;
int i;
int accel_x, accel_y, accel_z;
gboolean present_x, present_y, present_z;
if (data.read_size < 0) {
g_warning ("Couldn't read from device: %s", g_strerror (-errno));
return or_data->previous_orientation;
}
/* Rather than read everything:
* for (i = 0; i < data.read_size / or_data->scan_size; i++)...
* Just read the last one */
i = (data.read_size / or_data->scan_size) - 1;
if (i < 0) {
g_debug ("Not enough data to read (read_size: %d scan_size: %d)", data.read_size, or_data->scan_size);
return or_data->previous_orientation;
}
process_scan_1(data.data + or_data->scan_size*i, or_data->channels, or_data->channels_count, "in_accel_x", &accel_x, &present_x);
process_scan_1(data.data + or_data->scan_size*i, or_data->channels, or_data->channels_count, "in_accel_y", &accel_y, &present_y);
process_scan_1(data.data + or_data->scan_size*i, or_data->channels, or_data->channels_count, "in_accel_z", &accel_z, &present_z);
/* To match the Pegatron accelerometer code
* (see pega_accel_poll() in asus-laptop.c)
* we invert both x, and y values */
accel_x = -accel_x;
accel_y = -accel_y;
g_debug ("Read from IIO: %d, %d, %d", accel_x, accel_y, accel_z);
orientation = orientation_calc (or_data->previous_orientation, accel_x, accel_y, accel_z);
or_data->accel_x = accel_x;
or_data->accel_y = accel_y;
or_data->accel_z = accel_z;
return orientation;
}
static GUdevDevice *
find_accel (GUdevClient *client)
{
GList *devices, *l;
GUdevDevice *ret = NULL;
gboolean has_trigger = FALSE;
char *trigger_name;
devices = g_udev_client_query_by_subsystem (client, "iio");
/* Find the accelerometer */
for (l = devices; l != NULL; l = l->next) {
GUdevDevice *dev = l->data;
if (g_strcmp0 ("accel_3d", g_udev_device_get_sysfs_attr (dev, "name")) == 0) {
g_debug ("Found accel_3d at %s", g_udev_device_get_sysfs_path (dev));
ret = g_object_ref (dev);
break;
}
}
if (ret == NULL)
goto out;
/* Find the associated trigger */
trigger_name = g_strdup_printf ("accel_3d-dev%s", g_udev_device_get_number (ret));
for (l = devices; l != NULL; l = l->next) {
GUdevDevice *dev = l->data;
if (g_strcmp0 (trigger_name, g_udev_device_get_sysfs_attr (dev, "name")) == 0) {
g_debug ("Found associated trigger at %s", g_udev_device_get_sysfs_path (dev));
has_trigger = TRUE;
break;
}
}
g_free (trigger_name);
if (!has_trigger)
g_clear_object (&ret);
out:
g_list_free_full (devices, g_object_unref);
return ret;
}
static GUdevDevice *
setup_uinput_udev (GUdevClient *client)
{
GList *devices, *l;
GUdevDevice *ret = NULL;
devices = g_udev_client_query_by_subsystem (client, "input");
for (l = devices; l != NULL; l = l->next) {
GUdevDevice *dev = l->data;
if (g_udev_device_get_property_as_boolean (dev, "ID_INPUT_ACCELEROMETER")) {
ret = g_object_ref (dev);
break;
}
}
g_list_free_full (devices, g_object_unref);
return ret;
}
static gboolean
send_uinput_event (OrientationData *data)
{
struct uinput_event ev;
memset(&ev, 0, sizeof(ev));
ev.type = EV_ABS;
ev.code = ABS_X;
ev.value = data->accel_x;
write (data->uinput, &ev, sizeof(ev));
ev.code = ABS_Y;
ev.value = data->accel_y;
write (data->uinput, &ev, sizeof(ev));
ev.code = ABS_Z;
ev.value = data->accel_z;
write (data->uinput, &ev, sizeof(ev));
memset(&ev, 0, sizeof(ev));
gettimeofday(&ev.time, NULL);
ev.type = EV_SYN;
ev.code = SYN_REPORT;
write (data->uinput, &ev, sizeof(ev));
if (!data->uinput_dev)
data->uinput_dev = setup_uinput_udev (data->client);
if (!data->uinput_dev)
return FALSE;
if (write_sysfs_string ("uevent", (char *) g_udev_device_get_sysfs_path (data->uinput_dev), "change") < 0) {
g_warning ("Failed to write uevent");
return FALSE;
}
return TRUE;
}
static gboolean
read_orientation (gpointer user_data)
{
OrientationData *data = user_data;
OrientationUp orientation;
int ret;
ret = prepare_output (data, data->dev_dir_name, data->trigger_name, &process_scan);
if (ret < 0) {
g_main_loop_quit (data->loop);
return G_SOURCE_REMOVE;
}
orientation = ret;
g_debug ("Found orientation: %s, prev:%s",
orientation_to_string (orientation),
orientation_to_string (data->previous_orientation));
if (data->previous_orientation != orientation) {
/* If we failed to send the uevent,
* we'll try again a bit later */
if (send_uinput_event (data)) {
g_debug ("Emitted orientation changed: from %s to %s",
orientation_to_string (data->previous_orientation),
orientation_to_string (orientation));
data->previous_orientation = orientation;
}
}
return G_SOURCE_CONTINUE;
}
static gboolean
setup_uinput (OrientationData *data)
{
struct uinput_dev dev;
int fd;
fd = open("/dev/uinput", O_RDWR);
if (fd < 0) {
g_warning ("Could not open uinput");
return FALSE;
}
memset (&dev, 0, sizeof(dev));
snprintf (dev.name, sizeof (dev.name), "%s", "IIO Accelerometer Proxy");
dev.id.bustype = BUS_VIRTUAL;
dev.id.vendor = 0x01; //FIXME
dev.id.product = 0x02;
/* 1G accel is reported as ~256, so clamp to 2G */
dev.absmin[ABS_X] = dev.absmin[ABS_Y] = dev.absmin[ABS_Z] = -512;
dev.absmax[ABS_X] = dev.absmax[ABS_Y] = dev.absmax[ABS_Z] = 512;
if (write (fd, &dev, sizeof(dev)) != sizeof(dev)) {
g_warning ("Error creating uinput device");
goto bail;
}
/* enabling key events */
if (ioctl (fd, UI_SET_EVBIT, EV_ABS) < 0) {
g_warning ("Error enabling uinput absolute events");
goto bail;
}
/* enabling keys */
if (ioctl (fd, UI_SET_ABSBIT, ABS_X) < 0 ||
ioctl (fd, UI_SET_ABSBIT, ABS_Y) < 0 ||
ioctl (fd, UI_SET_ABSBIT, ABS_Z) < 0) {
g_warning ("Couldn't enable uinput axis");
goto bail;
}
/* creating the device */
if (ioctl (fd, UI_DEV_CREATE) < 0) {
g_warning ("Error creating uinput device");
goto bail;
}
data->uinput = fd;
return TRUE;
bail:
close (fd);
return FALSE;
}
static void
free_orientation_data (OrientationData *data)
{
int i;
if (data == NULL)
return;
g_free (data->dev_dir_name);
g_free (data->trigger_name);
g_free (data->dev_path);
for (i = 0; i < data->channels_count; i++)
channel_info_free (data->channels[i]);
g_free (data->channels);
if (data->uinput > 0)
close (data->uinput);
g_clear_object (&data->uinput_dev);
g_clear_object (&data->client);
g_clear_pointer (&data->loop, g_main_loop_unref);
g_free (data);
}
int main (int argc, char **argv)
{
OrientationData *data;
GUdevClient *client;
GUdevDevice *dev;
const gchar * const subsystems[] = { "iio", NULL };
guint id;
int ret = 0;
/* g_setenv ("G_MESSAGES_DEBUG", "all", TRUE); */
client = g_udev_client_new (subsystems);
dev = find_accel (client);
if (!dev) {
g_debug ("Could not find IIO accelerometer");
return 0;
}
data = g_new0 (OrientationData, 1);
data->previous_orientation = ORIENTATION_UNDEFINED;
data->dev_dir_name = g_strdup (g_udev_device_get_sysfs_path (dev));
data->device_id = atoi (g_udev_device_get_number (dev));
data->trigger_name = g_strdup_printf ("accel_3d-dev%d", data->device_id);
data->dev_path = g_strdup (g_udev_device_get_device_file (dev));
data->client = client;
if (!enable_sensors (dev, 1) ||
!enable_ring_buffer (data) ||
!enable_trigger (data)) {
ret = 1;
goto out;
}
/* Parse the files in scan_elements to identify what channels are present */
data->channels = build_channel_array (data->dev_dir_name, &(data->channels_count));
if (data->channels == NULL) {
g_warning ("Problem reading scan element information: %s", data->dev_dir_name);
ret = 1;
goto out;
}
data->scan_size = size_from_channelarray (data->channels, data->channels_count);
/* Set up uinput */
if (!setup_uinput (data)) {
free_orientation_data (data);
ret = 1;
goto out;
}
send_uinput_event (data);
id = g_timeout_add (700, read_orientation, data);
g_source_set_name_by_id (id, "read_orientation");
data->loop = g_main_loop_new (NULL, TRUE);
g_main_loop_run (data->loop);
out:
enable_sensors (dev, 0);
disable_ring_buffer (data);
g_object_unref (dev);
free_orientation_data (data);
return ret;
}