Files
libmegapixels/util/sensorprofile.c
2024-01-24 19:36:24 +01:00

478 lines
12 KiB
C

#include <libmegapixels.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <linux/videodev2.h>
#include <sys/ioctl.h>
#include <stdlib.h>
#include <sys/types.h>
#include <errno.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <getopt.h>
#include <ctype.h>
#include <math.h>
struct buffer {
void *start;
size_t length;
};
struct buffer *buffers;
struct control {
uint32_t id;
int64_t min;
int64_t max;
uint64_t step;
int64_t default_value;
int32_t value;
};
int
xioctl(int fd, int request, void *arg)
{
int r;
do {
r = ioctl(fd, request, arg);
} while (r == -1 && errno == EINTR);
return r;
}
void
usage(char *name)
{
fprintf(stderr, "Usage: %s [-h] [-n offset] [-c camera] [-o file]\n", name);
fprintf(stderr, "Measure the linearity of the sensor response\n\n");
fprintf(stderr, "Arguments:\n");
fprintf(stderr, " -n count Number of datapoint to gather, takes 1 second per point\n");
fprintf(stderr, " -c camera Use a specific camera number\n");
fprintf(stderr, " -m modenum Use another camera mode than the first\n");
fprintf(stderr, " -o file File to store the calibration in\n");
fprintf(stderr, " -h Display this help text\n");
}
void
brightness(const uint8_t *buffer, size_t length, libmegapixels_mode *mode, float *red, float *green, float *blue)
{
// Get the offset to a single line of pixels at the middle of the frame
size_t line = libmegapixels_mode_width_to_bytes(mode->format, mode->width);
size_t stride = line + libmegapixels_mode_width_to_padding(mode->format, mode->width);
size_t offset = stride * (mode->height / 2);
unsigned long long sum_r = 0, sum_g = 0, sum_b = 0;
unsigned int total = 0;
for (size_t i = 0; i < line; i += 2) {
uint8_t p1 = buffer[offset + i];
uint8_t p2 = buffer[offset + i + 1];
uint8_t p3 = buffer[offset + i + stride];
//uint8_t p4 = buffer[offset + i + 1 + stride];
total++;
switch (mode->v4l_pixfmt) {
case V4L2_PIX_FMT_SGRBG8:
sum_r += p2;
sum_g += p1;
sum_b += p3;
break;
default:
// TODO: Implement the other modes....
fprintf(stderr, "Unsupported v4l pixfmt\n");
exit(1);
}
}
float max = (float) pow(2, libmegapixels_format_bits_per_pixel(mode->format)) - 1.0f;
*red = (float) sum_r / (float) total / max;
*green = (float) sum_g / (float) total / max;
*blue = (float) sum_b / (float) total / max;
}
int
get_control(int sensor_fd, struct control *control)
{
struct v4l2_ext_control ctrl = {};
ctrl.id = control->id;
struct v4l2_ext_controls ctrls = {
.ctrl_class = 0,
.which = V4L2_CTRL_WHICH_CUR_VAL,
.count = 1,
.controls = &ctrl,
};
if (xioctl(sensor_fd, VIDIOC_G_EXT_CTRLS, &ctrls) == -1) {
if (errno != EINVAL) {
fprintf(stderr, "VIDIOC_G_EXT_CTRLS\n");
}
return 0;
}
control->value = ctrl.value;
return 1;
}
int
set_control(int sensor_fd, struct control *control)
{
struct v4l2_ext_control ctrl = {};
ctrl.id = control->id;
ctrl.value = control->value;
if (control->value > control->max || control->value < control->min) {
fprintf(stderr, "Value %d is out of range for %ld..%ld\n", control->value, control->min, control->max);
return 0;
}
struct v4l2_ext_controls ctrls = {
.ctrl_class = 0,
.which = V4L2_CTRL_WHICH_CUR_VAL,
.count = 1,
.controls = &ctrl,
};
if (xioctl(sensor_fd, VIDIOC_S_EXT_CTRLS, &ctrls) == -1) {
if (errno != EINVAL) {
fprintf(stderr, "VIDIOC_S_EXT_CTRLS\n");
}
return 0;
}
control->value = ctrl.value;
return 1;
}
int
query_control(int sensor_fd, struct control *control)
{
struct v4l2_query_ext_ctrl ctrl = {};
ctrl.id = control->id;
if (xioctl(sensor_fd, VIDIOC_QUERY_EXT_CTRL, &ctrl) == -1) {
if (errno != EINVAL) {
fprintf(stderr, "VIDIOC_QUERY_EXT_CTRL\n");
}
return 0;
}
control->min = ctrl.minimum;
control->max = ctrl.maximum;
control->step = ctrl.step;
control->default_value = ctrl.default_value;
return get_control(sensor_fd, control);
}
int
main(int argc, char *argv[])
{
int c;
int camera_id = 0;
long res;
char *end;
char *outfile = NULL;
int mode_idx = 0;
int step = 0;
int steps = 10;
while ((c = getopt(argc, argv, "hc:n:o:m:")) != -1) {
switch (c) {
case 'c':
res = strtol(optarg, &end, 10);
if (end == optarg || end == NULL || *end != '\0') {
fprintf(stderr, "Invalid number for -c\n");
return 1;
}
camera_id = (int) res;
break;
case 'o':
outfile = optarg;
break;
case 'm':
res = strtol(optarg, &end, 10);
if (end == optarg || end == NULL || *end != '\0') {
fprintf(stderr, "Invalid number for -m\n");
return 1;
}
mode_idx = (int) res;
break;
case 'n':
res = strtol(optarg, &end, 10);
if (end == optarg || end == NULL || *end != '\0') {
fprintf(stderr, "Invalid number for -n\n");
return 1;
}
steps = (int) res;
break;
case 'h':
usage(argv[0]);
return 0;
break;
case '?':
if (optopt == 'd' || optopt == 'l') {
fprintf(stderr, "Option -%c requires an argument.\n", optopt);
} else if (isprint(optopt)) {
fprintf(stderr, "Unknown option '-%c'\n", optopt);
} else {
fprintf(stderr, "Unknown option character x%x\n", optopt);
}
return 1;
default:
usage(argv[0]);
return 1;
}
}
char configpath[PATH_MAX];
int ret = libmegapixels_find_config(configpath);
libmegapixels_devconfig *config = {0};
libmegapixels_init(&config);
if (ret) {
printf("Using config: %s\n", configpath);
libmegapixels_load_file(config, configpath);
} else {
fprintf(stderr, "No config found for this device\n");
}
libmegapixels_load_uvc(config);
if (config->count == 0) {
fprintf(stderr, "No valid camera configuration\n");
return 1;
}
if (camera_id > config->count - 1) {
fprintf(stderr, "Camera id %d does not exist\n", camera_id);
return 1;
}
libmegapixels_camera *camera = config->cameras[camera_id];
if (libmegapixels_open(camera) != 0) {
fprintf(stderr, "Could not open default camera\n");
return 1;
}
if (mode_idx > camera->num_modes) {
fprintf(stderr, "Invalid mode index: %d\n", mode_idx);
}
libmegapixels_mode *mode = camera->modes[mode_idx];
struct v4l2_format format = {0};
unsigned int frame_size = libmegapixels_select_mode(camera, mode, &format);
if (frame_size == 0) {
fprintf(stderr, "Could not select mode\n");
return 1;
}
// Get the handles to the required V4L controls for the calibration
struct control shutter = {.id = V4L2_CID_EXPOSURE};
struct control gain = {.id = V4L2_CID_ANALOGUE_GAIN};
if (!query_control(camera->sensor_fd, &shutter)) {
fprintf(stderr, "Could not query V4L2_CID_EXPOSURE\n");
return 1;
}
printf("Exposure: %ld..%ld step %lu val %d\n", shutter.min, shutter.max, shutter.step, shutter.value);
if (!query_control(camera->sensor_fd, &gain)) {
fprintf(stderr, "Could not query V4L2_CID_ANALOGUE_GAIN\n");
return 1;
}
printf("Gain: %ld..%ld step %lu val %d\n", gain.min, gain.max, gain.step, gain.value);
// Set the controls to the initial state
shutter.value = shutter.max;
if (!set_control(camera->sensor_fd, &shutter)) {
fprintf(stderr, "Could not set the shutter to max\n");
return 1;
}
// Do the reqular V4L2 stuff to get a frame
struct v4l2_capability cap;
int mplanes = 0;
enum v4l2_buf_type buftype = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (ioctl(camera->video_fd, VIDIOC_QUERYCAP, &cap) != 0) {
fprintf(stderr, "VIDIOC_QUERYCAP failed: %s\n", strerror(errno));
return 1;
}
if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "Device does not support streaming i/o\n");
return 1;
}
if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
if (cap.capabilities & V4L2_CAP_VIDEO_CAPTURE_MPLANE) {
mplanes = 1;
buftype = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
} else {
fprintf(stderr, "Device does not support V4L2_CAP_VIDEO_CAPTURE\n");
return 1;
}
}
struct v4l2_requestbuffers req = {0};
req.count = 4;
req.type = buftype;
req.memory = V4L2_MEMORY_MMAP;
if (xioctl(camera->video_fd, VIDIOC_REQBUFS, &req) == -1) {
fprintf(stderr, "VIDIOC_REQBUFS failed: %s\n", strerror(errno));
return 1;
}
buffers = calloc(req.count, sizeof(*buffers));
for (int i = 0; i < req.count; i++) {
struct v4l2_buffer buf = {0};
buf.type = buftype;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
struct v4l2_plane planes[1];
if (mplanes) {
buf.m.planes = planes;
buf.length = 1;
}
if (xioctl(camera->video_fd, VIDIOC_QUERYBUF, &buf) == -1) {
fprintf(stderr, "VIDIOC_QUERYBUF failed: %s\n", strerror(errno));
return 1;
}
unsigned int offset;
if (mplanes) {
buffers[i].length = planes[0].length;
offset = planes[0].m.mem_offset;
} else {
buffers[i].length = buf.length;
offset = buf.m.offset;
}
buffers[i].start = mmap(NULL, buffers[i].length, PROT_READ | PROT_WRITE, MAP_SHARED, camera->video_fd, offset);
if (buffers[i].start == MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
return 1;
}
}
for (int i = 0; i < req.count; i++) {
struct v4l2_buffer qbuf = {0};
qbuf.type = buftype;
qbuf.memory = V4L2_MEMORY_MMAP;
qbuf.index = i;
if (mplanes) {
struct v4l2_plane qplanes[1];
qbuf.m.planes = qplanes;
qbuf.length = 1;
}
if (xioctl(camera->video_fd, VIDIOC_QBUF, &qbuf) == -1) {
fprintf(stderr, "VIDIOC_QBUF failed: %s\n", strerror(errno));
return 1;
}
}
enum v4l2_buf_type type = buftype;
if (xioctl(camera->video_fd, VIDIOC_STREAMON, &type) == -1) {
fprintf(stderr, "VIDIOC_STREAMON failed: %s\n", strerror(errno));
return 1;
}
// Open the target file
FILE *outf = fopen(outfile, "w");
if (outf == NULL) {
fprintf(stderr, "Could not open output file\n");
return 1;
}
printf("Performing initial setup...\n");
struct timeval t_start, t_now;
gettimeofday(&t_start, NULL);
int stage = 1;
double point = 1.0;
while (stage > 0) {
while (1) {
fd_set(fds);
FD_ZERO(&fds);
FD_SET(camera->video_fd, &fds);
int sr = select(FD_SETSIZE, &fds, NULL, NULL, NULL);
if (sr == -1) {
if (errno == EINTR) {
continue;
}
fprintf(stderr, "select() failed: %s\n", strerror(errno));
return 1;
}
struct v4l2_buffer buf = {0};
buf.type = buftype;
buf.memory = V4L2_MEMORY_MMAP;
if (mplanes) {
struct v4l2_plane dqplanes[1];
buf.m.planes = dqplanes;
buf.length = 1;
}
if (xioctl(camera->video_fd, VIDIOC_DQBUF, &buf) == -1) {
fprintf(stderr, "VIDIOC_DQBUF failed\n");
return 1;
}
if (stage == 1) {
// Setup stage to figure out initial brightness
gettimeofday(&t_now, NULL);
if (t_now.tv_sec - t_start.tv_sec > 1) {
gettimeofday(&t_start, NULL);
float red, green, blue;
brightness(buffers[buf.index].start, buf.bytesused, mode, &red, &green, &blue);
printf("Brightness: %f, %f, %f\n", red, green, blue);
if (red == 1.0f || green == 1.0f || blue == 1.0f) {
// Clipping the sensor. Lower gain
if (gain.value == gain.min) {
printf("! Lower the light source brightness, out of gain range\n");
} else {
gain.value -= gain.step;
set_control(camera->sensor_fd, &gain);
}
} else if (red > 0.9 && green > 0.9 && blue > 0.9) {
printf("Set up target hit, continue to calibration...\n\n\n");
stage = 2;
}
}
} else if (stage == 2) {
gettimeofday(&t_now, NULL);
if (t_now.tv_sec - t_start.tv_sec > 1) {
gettimeofday(&t_start, NULL);
float red, green, blue;
brightness(buffers[buf.index].start, buf.bytesused, mode, &red, &green, &blue);
printf("[%4d / %4d] %f: %f, %f, %f\n", step, steps, point, red, green, blue);
fprintf(outf, "%f,%f,%f,%f\n", point, red, green, blue);
step++;
// Get next shutter value
point = (double) step / (double) steps;
point = 1.0 - point;
uint32_t exposure = (uint32_t) (shutter.max * point);
if (exposure < shutter.min) {
exposure = shutter.min;
}
// Set the new shutter value for the next iteration
shutter.value = exposure;
set_control(camera->sensor_fd, &shutter);
if (step == steps + 1) {
stage = 0;
fclose(outf);
}
}
}
if (xioctl(camera->video_fd, VIDIOC_QBUF, &buf) == -1) {
fprintf(stderr, "VIDIOC_DQBUF failed\n");
return 1;
}
break;
}
}
return 0;
}