ollama: ship a bunch of new models

This commit is contained in:
2025-07-24 19:53:17 +00:00
parent 7b66e2f0e2
commit e2a183e8d3
18 changed files with 302 additions and 10 deletions

View File

@@ -40,11 +40,17 @@ let
deepseek-r1-abliterated-14b deepseek-r1-abliterated-14b
deepseek-r1-abliterated-32b deepseek-r1-abliterated-32b
deepseek-r1-abliterated-70b deepseek-r1-abliterated-70b
dolphin-mistral-7b # UNCENSORED mistral; compliant devstral-24b
dolphin-mixtral-8x7b # about as fast as a 14b model, similar quality results. uncensored, but still preachy dolphin3-8b
# dolphin-mistral-7b # UNCENSORED mistral; compliant
# dolphin-mixtral-8x7b # about as fast as a 14b model, similar quality results. uncensored, but still preachy
# falcon2-11b # code examples are lacking # falcon2-11b # code examples are lacking
# gemma2-9b # fast, but not great for code # gemma2-9b # fast, but not great for code
gemma2-27b # generates at 1word/sec, but decent coding results if you can wrangle it # gemma2-27b # generates at 1word/sec, but decent coding results if you can wrangle it
gemma3-12b
gemma3-27b
gemma3n-e2b
gemma3n-e4b
# glm4-9b # it generates invalid code # glm4-9b # it generates invalid code
# hermes3-8b # FAST, but unwieldy # hermes3-8b # FAST, but unwieldy
# llama3-chatqa-8b # it gets stuck # llama3-chatqa-8b # it gets stuck
@@ -54,15 +60,25 @@ let
# llama3_3-70b # non-compliant; dodges iffy questions # llama3_3-70b # non-compliant; dodges iffy questions
llama3_3-abliterated-70b # compliant, but slower and not as helpful as deepseek-r1-abliterated-70b llama3_3-abliterated-70b # compliant, but slower and not as helpful as deepseek-r1-abliterated-70b
magicoder-7b # it generates valid, if sparse, code magicoder-7b # it generates valid, if sparse, code
magistral-24b
marco-o1-7b # untested marco-o1-7b # untested
# mistral-7b # it generates invalid code # mistral-7b # it generates invalid code
# mistral-nemo-12b # it generates invalid code # mistral-nemo-12b # it generates invalid code
mistral-small-22b # quality comparable to qwen2_5 # mistral-small-22b # quality comparable to qwen2_5
mistral-small3_2-24b
# mistral-large-123b # times out launch on desko # mistral-large-123b # times out launch on desko
# mixtral-8x7b # generates valid, if sparse, code; only for the most popular languages # mixtral-8x7b # generates valid, if sparse, code; only for the most popular languages
olmo2-13b
openthinker-7b
openthinker-32b
orca-mini-7b
# phi3_5-3b # generates invalid code # phi3_5-3b # generates invalid code
phi4-14b
# qwen2_5-7b # notably less quality than 32b (i.e. generates invalid code) # qwen2_5-7b # notably less quality than 32b (i.e. generates invalid code)
qwen2_5-14b # *almost* same quality to 32b variant, but faster # qwen2_5-14b # *almost* same quality to 32b variant, but faster
qwen3-8b
qwen3-14b
qwen3-30b
# qwen2_5-32b-instruct-q2_K # lower-res version of default 32b (so, slightly faster, but generates invalid code where the full res generates valid code) # qwen2_5-32b-instruct-q2_K # lower-res version of default 32b (so, slightly faster, but generates invalid code where the full res generates valid code)
qwen2_5-32b # generates 3~5 words/sec, but notably more accurate than coder-7b qwen2_5-32b # generates 3~5 words/sec, but notably more accurate than coder-7b
qwen2_5-abliterate-7b qwen2_5-abliterate-7b

View File

@@ -5,14 +5,104 @@ ollama API isn't documented anywhere, and it has changed over time, but it's all
- `https://registry.ollama.ai/v2/library/$model/manifests/$variant` - `https://registry.ollama.ai/v2/library/$model/manifests/$variant`
## choosing a model ## choosing a model
### for coding: ### easy way:
- <https://huggingface.co/spaces/mike-ravkine/can-ai-code-results> - <https://ollama.com/library?sort=popular>
- <https://eqbench.com/>
- <https://evalplus.github.io/leaderboard.html> ### social way:
- <https://www.reddit.com/r/LocalLLaMA/>
### for sensitive/illicit things ("Uncensored General Intelligence"): ### for sensitive/illicit things ("Uncensored General Intelligence"):
- <https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard>
- <https://www.reddit.com/r/LocalLLaMA/comments/1hk0ldo/december_2024_uncensored_llm_test_results/> - <https://www.reddit.com/r/LocalLLaMA/comments/1hk0ldo/december_2024_uncensored_llm_test_results/>
- search "abliterated" or "abliterate" - search "abliterated" or "abliterate"
- search "uncensored" - search "uncensored"
- search "Eric Hartford" <https://erichartford.com/uncensored-models> - search "Eric Hartford" <https://erichartford.com/uncensored-models>
### leaderboards
- <https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard>
- specifically for locally-hosted models
- <https://lmarena.ai/leaderboard>
- general purpose
- user ranked
- lacks details like model size, eval time, etc
- <https://eqbench.com/>
- for code writing
- <https://evalplus.github.io/leaderboard.html>
- for code writing
- <https://huggingface.co/spaces/mike-ravkine/can-ai-code-results>
- for code writing
- <https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard>
- for uncensored models
## recent model releases
- [ ] kimi-k2 (1026b)
- released 2025-07-17
- <https://ollama.com/huihui_ai/kimi-k2>
- requires patching ollama (trivial)
- <https://huggingface.co/moonshotai/Kimi-K2-Instruct>
- Mixture-of-Experts, with 384 experts & 32B activated parameters
- [x] gemma3n (e2b, e4b)
- released 2025-06-20 (ish)
- <https://ollama.com/library/gemma3n>
- [x] mistral-small3.2 (24b)
- released 2025-06-20
- <https://ollama.com/library/mistral-small3.2>
- [x] magistral (24b)
- released 2025-06-10
- <https://ollama.com/library/magistral>
- <https://mistral.ai/news/magistral>
- [x] devstral (24b)
- released 2025-05-21
- <https://ollama.com/library/devstral>
- <https://mistral.ai/news/devstral>
- [ ] phi4-reasoning (14b)
- released 2025-04-30
- <https://ollama.com/library/phi4-reasoning>
- <https://azure.microsoft.com/en-us/blog/one-year-of-phi-small-language-models-making-big-leaps-in-ai/>
- [x] phi4 (14b)
- released 2025-04-30
- <https://ollama.com/library/phi4>
- <https://azure.microsoft.com/en-us/blog/one-year-of-phi-small-language-models-making-big-leaps-in-ai/>
- [x] qwen3 (0.6b, 1.7b, 4b, 8b, 14b, 30b, 32b, 235b)
- released 2025-04-29
- <https://ollama.com/library/qwen3>
- <https://qwenlm.github.io/blog/qwen3/>
- [ ] granite3.3 (2b, 8b)
- released 2025-04-16
- <https://ollama.com/library/granite3.3>
- [ ] cogito (3b, 8b, 14b, 32b, 70b)
- released 2025-04-08
- <https://ollama.com/library/cogito>
- <https://www.deepcogito.com/research/cogito-v1-preview>
- [ ] deepcoder (1.5b, 14b)
- released 2025-04-07
- <https://ollama.com/library/deepcoder>
- <https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51>
- [ ] llama4 (16x17b, 128x17b)
- released 2025-04-05
- <https://ollama.com/library/llama4>
- <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>
- [ ] exaone-deep (2.4b, 7.8b, 32b)
- released 2025-03-18
- <https://ollama.com/library/exaone-deep>
- [ ] mistral-small3.1 (24b)
- released 2025-03-17
- <https://ollama.com/library/mistral-small3.1>
- <https://mistral.ai/news/mistral-small-3-1>
- [x] gemma3 (1b, 4b, 12b, 27b)
- released 2025-03-xx
- <https://ollama.com/library/gemma3>
- [x] openthinker (7b, 32b)
- released 2025-01-28
- <https://ollama.com/library/openthinker>
- <https://www.open-thoughts.ai/blog/launch>
- [x] dolphin3 (8b)
- released 2024-12-29
- <https://ollama.com/library/dolphin3>
- [x] olmo2 (7b, 13b)
- released 2024-11-26
- <https://ollama.com/library/olmo2>
- <https://allenai.org/blog/olmo2>
- [x] orca-mini (3b, 7b, 13b, 70b)
- released 2023-06-23
- <https://ollama.com/library/orca-mini>

View File

@@ -0,0 +1,12 @@
# <https://ollama.com/library/devstral> (24b)
# <https://mistral.ai/news/devstral>
# released 2025-05-21
{ mkOllamaModel }: mkOllamaModel {
modelName = "devstral";
variant = "24b";
manifestHash = "sha256-m9dBk+k5NenYVk2IYHsiCp00HEo2t0jP/L2a1PR6nKk=";
modelBlob = "b3a2c9a8fef9be8d2ef951aecca36a36b9ea0b70abe9359eab4315bf4cd9be01";
modelBlobHash = "sha256-s6LJqP75vo0u+VGuzKNqNrnqC3Cr6TWeq0MVv0zZvgE=";
systemBlob = "5725afc40acd80cbeefba61e41cf50eb7924f6ed2fe6aec2dc6fa0e9f2c396d1";
systemBlobHash = "sha256-VyWvxArNgMvu+6YeQc9Q63kk9u0v5q7C3G+g6fLDltE=";
}

View File

@@ -0,0 +1,14 @@
# <https://ollama.com/library/dolphin3> (8b)
# "Dolphin 3.0 Llama 3.1 8B 🐬 is the next generation of the Dolphin series of instruct-tuned models designed to be the ultimate general purpose local model, enabling coding, math, agentic, function calling, and general use cases."
# released 2024-12-29
{ mkOllamaModel }: mkOllamaModel {
modelName = "dolphin3";
variant = "8b";
manifestHash = "sha256-1aua6OHyJhmmvlLlaU30IrcYOjiDmQoAAYjDY3gey3g=";
modelBlob = "1eee6953530837b2b17d61a4e6f71a5aa31c9714cfcf3cb141aa5c1972b5116b";
modelBlobHash = "sha256-Hu5pU1MIN7KxfWGk5vcaWqMclxTPzzyxQapcGXK1EWs=";
paramsBlob = "f02dd72bb2423204352eabc5637b44d79d17f109fdb510a7c51455892aa2d216";
paramsBlobHash = "sha256-8C3XK7JCMgQ1LqvFY3tE150X8Qn9tRCnxRRViSqi0hY=";
systemBlob = "8b586b146d99262cc7bf20f47faa5507dd5c8476967be9e03822262361204637";
systemBlobHash = "sha256-i1hrFG2ZJizHvyD0f6pVB91chHaWe+ngOCImI2EgRjc=";
}

View File

@@ -0,0 +1,11 @@
# <https://ollama.com/library/gemma3> (1b, 4b, 12b, 27b)
# released 2025-03-xx
{ mkOllamaModel }: mkOllamaModel {
modelName = "gemma3";
variant = "12b";
manifestHash = "sha256-9AMaq2N9H/o3tCVwRSrg5PrQMUdU0X3tZzIuS5WDb4o=";
modelBlob = "e8ad13eff07a78d89926e9e8b882317d082ef5bf9768ad7b50fcdbbcd63748de";
modelBlobHash = "sha256-6K0T7/B6eNiZJunouIIxfQgu9b+XaK17UPzbvNY3SN4=";
paramsBlob = "3116c52250752e00dd06b16382e952bd33c34fd79fc4fe3a5d2c77cf7de1b14b";
paramsBlobHash = "sha256-MRbFIlB1LgDdBrFjgulSvTPDT9efxP46XSx3z33hsUs=";
}

View File

@@ -0,0 +1,11 @@
# <https://ollama.com/library/gemma3> (1b, 4b, 12b, 27b)
# released 2025-03-xx
{ mkOllamaModel }: mkOllamaModel {
modelName = "gemma3";
variant = "27b";
manifestHash = "sha256-pBj1g46vf+LP4KMEbIOEtoukOkQ1VCyUL52wCl80IgM=";
modelBlob = "e796792eba26c4d3b04b0ac5adb01a453dd9ec2dfd83b6c59cbf6fe5f30b0f68";
modelBlobHash = "sha256-55Z5LromxNOwSwrFrbAaRT3Z7C39g7bFnL9v5fMLD2g=";
paramsBlob = "3116c52250752e00dd06b16382e952bd33c34fd79fc4fe3a5d2c77cf7de1b14b";
paramsBlobHash = "sha256-MRbFIlB1LgDdBrFjgulSvTPDT9efxP46XSx3z33hsUs=";
}

View File

@@ -0,0 +1,10 @@
# <https://ollama.com/library/gemma3n> (e2b, e4b)
# released 2025-06-20 (ish)
# features selective activation; e2b activates 2b parameters per eval, but _contains_ many more.
{ mkOllamaModel }: mkOllamaModel {
modelName = "gemma3n";
variant = "e2b";
manifestHash = "sha256-cZNy+Mfe7hiIIaTcuvde+hOjQtfoinnU/CQSsklH9v0=";
modelBlob = "3839a254cf2d00b208c6e2524c129e4438f9d106bba4c3fbc12b631f519d1de1";
modelBlobHash = "sha256-ODmiVM8tALIIxuJSTBKeRDj50Qa7pMP7wStjH1GdHeE=";
}

View File

@@ -0,0 +1,10 @@
# <https://ollama.com/library/gemma3n> (e2b, e4b)
# released 2025-06-20 (ish)
# features selective activation; e2b activates 2b parameters per eval, but _contains_ many more.
{ mkOllamaModel }: mkOllamaModel {
modelName = "gemma3n";
variant = "e4b";
manifestHash = "sha256-Fcs5/ZOU/SVJ9t+Qgc/ITdE07PLJxb6RHlYpkgSJrDI=";
modelBlob = "38e8dcc30df4eb0e29eaf5c74ba6ce3f2cd66badad50768fc14362acfb8b8cb6";
modelBlobHash = "sha256-OOjcww306w4p6vXHS6bOPyzWa62tUHaPwUNirPuLjLY=";
}

View File

@@ -0,0 +1,14 @@
# <https://ollama.com/library/magistral> (24b)
# <https://mistral.ai/news/magistral>
# released 2025-06-10
{ mkOllamaModel }: mkOllamaModel {
modelName = "magistral";
variant = "24b";
manifestHash = "sha256-J7y79tMkF9OooS1eub1V/ablWRgH4rAqqvRCOJmSWvw=";
modelBlob = "641615e9986bc8687f936cd87c586bdd92d338172c4180963080e48b8e84ec36";
modelBlobHash = "sha256-ZBYV6ZhryGh/k2zYfFhr3ZLTOBcsQYCWMIDki46E7DY=";
paramsBlob = "ba3ab63d35822e9df884ce427fa8f553655296324e035ccf79523e1e293fbd9b";
paramsBlobHash = "sha256-ujq2PTWCLp34hM5Cf6j1U2VSljJOA1zPeVI+Hik/vZs=";
systemBlob = "43c1db03bf38c4a9a096463d4b9de42ba9e835c084e4c7fdc20ffdef85ec8605";
systemBlobHash = "sha256-Q8HbA784xKmglkY9S53kK6noNcCE5Mf9wg/974XshgU=";
}

View File

@@ -0,0 +1,13 @@
# <https://ollama.com/library/mistral-small3.2> (24b)
# released 2025-06-20
{ mkOllamaModel }: mkOllamaModel {
modelName = "mistral-small3.2";
variant = "24b";
manifestHash = "sha256-WkCKtV31wbXPRlM8NogTswv55Nj8OSY78qMzjPo7iVs=";
modelBlob = "41a5b0c36a28a3a0480ce2e4007d3a21e3298be70e2b9a103960581412997dca";
modelBlobHash = "sha256-QaWww2ooo6BIDOLkAH06IeMpi+cOK5oQOWBYFBKZfco=";
paramsBlob = "e0daf17ff83eace4813f9e8554b262f6cc33ad880ff8df41a156ff9ef5522ddb";
paramsBlobHash = "sha256-4Nrxf/g+rOSBP56FVLJi9swzrYgP+N9BoVb/nvVSLds=";
systemBlob = "9c810f69c610d59a322085379f81ad72814b84916a1c3d0262cf1b1114bbfb36";
systemBlobHash = "sha256-nIEPacYQ1ZoyIIU3n4GtcoFLhJFqHD0CYs8bERS7+zY=";
}

View File

@@ -0,0 +1,12 @@
# <https://ollama.com/library/olmo2> (7b, 13b)
# <https://allenai.org/blog/olmo2>
# released 2024-11-26
{ mkOllamaModel }: mkOllamaModel {
modelName = "olmo2";
variant = "13b";
manifestHash = "sha256-bCeevJgPsHyntJzM8XtfrvanMILKxLPUTSImmB3mdto=";
modelBlob = "cd836509a1a051178be134eba84115eb3a6653a1bd58473a706bf8ee4ab3a764";
modelBlobHash = "sha256-zYNlCaGgUReL4TTrqEEV6zpmU6G9WEc6cGv47kqzp2Q=";
systemBlob = "8b89eea08a537a813b05fbc5edf73b7719a478a06ad69d8d02345294233ffef6";
systemBlobHash = "sha256-i4nuoIpTeoE7BfvF7fc7dxmkeKBq1p2NAjRSlCM//vY=";
}

View File

@@ -0,0 +1,10 @@
# <https://ollama.com/library/openthinker> (7b, 32b)
# <https://www.open-thoughts.ai/blog/launch>
# released 2025-01-28
{ mkOllamaModel }: mkOllamaModel {
modelName = "openthinker";
variant = "32b";
manifestHash = "sha256-BLWTfcsWA0OiRz9nlQ9EWJ28HiUzA6EEMP6x2+sDKqo=";
modelBlob = "91caa17000dd473aa64689ed40795df5511baab177c43c04a6ad71f1434e9b78";
modelBlobHash = "sha256-kcqhcADdRzqmRontQHld9VEbqrF3xDwEpq1x8UNOm3g=";
}

View File

@@ -0,0 +1,10 @@
# <https://ollama.com/library/openthinker> (7b, 32b)
# https://www.open-thoughts.ai/blog/launch
# released 2025-01-28
{ mkOllamaModel }: mkOllamaModel {
modelName = "openthinker";
variant = "7b";
manifestHash = "sha256-TmF3T30c+JBL49q7YMo1PwpDGzzZe4IrQquTVMo1X4Y=";
modelBlob = "8c43c12af50714bb5a5af123334ca23c54730cb6b3eed641cf12613ab9349c77";
modelBlobHash = "sha256-jEPBKvUHFLtaWvEjM0yiPFRzDLaz7tZBzxJhOrk0nHc=";
}

View File

@@ -0,0 +1,13 @@
# <https://ollama.com/library/orca-mini> (3b, 7b, 13b, 70b)
# released 2023-06-23
{ mkOllamaModel }: mkOllamaModel {
modelName = "orca-mini";
variant = "7b";
manifestHash = "sha256-nJYY4uiVL6LC+sSYbMEokjvTbyOWOdezGtJpLybebas=";
modelBlob = "40ac7cfa75a3e4895f713126633775dd7342c08307b2c5e6e518006072af3cf5";
modelBlobHash = "sha256-QKx8+nWj5IlfcTEmYzd13XNCwIMHssXm5RgAYHKvPPU=";
paramsBlob = "29f7936d3d8c5cf0d3d73036cfbdeb807b7a8cbe33887c4da313139bb9ec57ad";
paramsBlobHash = "sha256-KfeTbT2MXPDT1zA2z73rgHt6jL4ziHxNoxMTm7nsV60=";
systemBlob = "93ca9b3d83dc541f11062c0b994ae66a7b327146f59a9564aafef4a4c15d1ef5";
systemBlobHash = "sha256-k8qbPYPcVB8RBiwLmUrmansycUb1mpVkqv70pMFdHvU=";
}

View File

@@ -0,0 +1,10 @@
# <https://ollama.com/library/phi4>
{ mkOllamaModel }: mkOllamaModel {
modelName = "phi4";
variant = "14b";
manifestHash = "sha256-rIluW4s0ofTvp7FNdSByUUDVUSSERX+rRdKk6hTGnbo=";
modelBlob = "fd7b6731c33c57f61767612f56517460ec2d1e2e5a3f0163e0eb3d8d8cb5df20";
modelBlobHash = "sha256-/XtnMcM8V/YXZ2EvVlF0YOwtHi5aPwFj4Os9jYy13yA=";
paramsBlob = "45a1c652dddc9efdcefa977ab81cfbe26b6e52bc8e78f2f4c698538783e0ac80";
paramsBlobHash = "sha256-RaHGUt3cnv3O+pd6uBz74mtuUryOePL0xphTh4PgrIA=";
}

View File

@@ -0,0 +1,12 @@
# <https://ollama.com/library/qwen3> (0.6b, 1.7b, 4b, 8b, 14b, 30b, 32b, 235b)
# <https://qwenlm.github.io/blog/qwen3/>
# released 2025-04-29
{ mkOllamaModel }: mkOllamaModel {
modelName = "qwen3";
variant = "14b";
manifestHash = "sha256-vb0YHDPy7RsxyXKZGILbPPTRklaQkhOKfSnpc82d6+g=";
modelBlob = "a8cc1361f3145dc01f6d77c6c82c9116b9ffe3c97b34716fe20418455876c40e";
modelBlobHash = "sha256-qMwTYfMUXcAfbXfGyCyRFrn/48l7NHFv4gQYRVh2xA4=";
paramsBlob = "cff3f395ef3756ab63e58b0ad1b32bb6f802905cae1472e6a12034e4246fbbdb";
paramsBlobHash = "sha256-z/Pzle83Vqtj5YsK0bMrtvgCkFyuFHLmoSA05CRvu9s=";
}

View File

@@ -0,0 +1,12 @@
# <https://ollama.com/library/qwen3> (0.6b, 1.7b, 4b, 8b, 14b, 30b, 32b, 235b)
# <https://qwenlm.github.io/blog/qwen3/>
# released 2025-04-29
{ mkOllamaModel }: mkOllamaModel {
modelName = "qwen3";
variant = "30b";
manifestHash = "sha256-CygRC3ozZCltXO9gkJVTcYn7uBVHdh3mn9It1o0hZsI=";
modelBlob = "e9183b5c18a0cf736578c1e3d1cbd4b7e98e3ad3be6176b68c20f156d54a07ac";
modelBlobHash = "sha256-6Rg7XBigz3NleMHj0cvUt+mOOtO+YXa2jCDxVtVKB6w=";
paramsBlob = "cff3f395ef3756ab63e58b0ad1b32bb6f802905cae1472e6a12034e4246fbbdb";
paramsBlobHash = "sha256-z/Pzle83Vqtj5YsK0bMrtvgCkFyuFHLmoSA05CRvu9s=";
}

View File

@@ -0,0 +1,12 @@
# <https://ollama.com/library/qwen3> (0.6b, 1.7b, 4b, 8b, 14b, 30b, 32b, 235b)
# <https://qwenlm.github.io/blog/qwen3/>
# released 2025-04-29
{ mkOllamaModel }: mkOllamaModel {
modelName = "qwen3";
variant = "8b";
manifestHash = "sha256-UAofBnqfeCYgtAvub3sMieF65h9oa5LCSTPkyksri0E=";
modelBlob = "a3de86cd1c132c822487ededd47a324c50491393e6565cd14bafa40d0b8e686f";
modelBlobHash = "sha256-o96GzRwTLIIkh+3t1HoyTFBJE5PmVlzRS6+kDQuOaG8=";
paramsBlob = "cff3f395ef3756ab63e58b0ad1b32bb6f802905cae1472e6a12034e4246fbbdb";
paramsBlobHash = "sha256-z/Pzle83Vqtj5YsK0bMrtvgCkFyuFHLmoSA05CRvu9s=";
}