nixpkgs/nixos/lib/make-disk-image.nix
Arian van Putten b75a29cb6c nixos/lib/make-disk-image.nix: fix systemd-boot-builder clobbering /homeless-shelter
systemd-boot-builder.py calls nix-env --list-generations which creates
$HOME/.nix-defexpr/channels/nixos if it doesn't exist. This would cause a folder
/homeless-shelter to show up in the final image which in turn breaks nix builds
in the target image if sandboxing is turned off (as /homeless-shelter is never
allowed to exist).
2024-03-01 12:52:48 +01:00

659 lines
25 KiB
Nix
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Technical details
`make-disk-image` has a bit of magic to minimize the amount of work to do in a virtual machine.
It relies on the [LKL (Linux Kernel Library) project](https://github.com/lkl/linux) which provides Linux kernel as userspace library.
The Nix-store only image only need to run LKL tools to produce an image and will never spawn a virtual machine, whereas full images will always require a virtual machine, but also use LKL.
### Image preparation phase
Image preparation phase will produce the initial image layout in a folder:
- devise a root folder based on `$PWD`
- prepare the contents by copying and restoring ACLs in this root folder
- load in the Nix store database all additional paths computed by `pkgs.closureInfo` in a temporary Nix store
- run `nixos-install` in a temporary folder
- transfer from the temporary store the additional paths registered to the installed NixOS
- compute the size of the disk image based on the apparent size of the root folder
- partition the disk image using the corresponding script according to the partition table type
- format the partitions if needed
- use `cptofs` (LKL tool) to copy the root folder inside the disk image
At this step, the disk image already contains the Nix store, it now only needs to be converted to the desired format to be used.
### Image conversion phase
Using `qemu-img`, the disk image is converted from a raw format to the desired format: qcow2(-compressed), vdi, vpc.
### Image Partitioning
#### `none`
No partition table layout is written. The image is a bare filesystem image.
#### `legacy`
The image is partitioned using MBR. There is one primary ext4 partition starting at 1 MiB that fills the rest of the disk image.
This partition layout is unsuitable for UEFI.
#### `legacy+gpt`
This partition table type uses GPT and:
- create a "no filesystem" partition from 1MiB to 2MiB ;
- set `bios_grub` flag on this "no filesystem" partition, which marks it as a [GRUB BIOS partition](https://www.gnu.org/software/parted/manual/html_node/set.html) ;
- create a primary ext4 partition starting at 2MiB and extending to the full disk image ;
- perform optimal alignments checks on each partition
This partition layout is unsuitable for UEFI boot, because it has no ESP (EFI System Partition) partition. It can work with CSM (Compatibility Support Module) which emulates legacy (BIOS) boot for UEFI.
#### `efi`
This partition table type uses GPT and:
- creates an FAT32 ESP partition from 8MiB to specified `bootSize` parameter (256MiB by default), set it bootable ;
- creates an primary ext4 partition starting after the boot partition and extending to the full disk image
#### `efixbootldr`
This partition table type uses GPT and:
- creates an FAT32 ESP partition from 8MiB to 100MiB, set it bootable ;
- creates an FAT32 BOOT partition from 100MiB to specified `bootSize` parameter (256MiB by default), set `bls_boot` flag ;
- creates an primary ext4 partition starting after the boot partition and extending to the full disk image
#### `hybrid`
This partition table type uses GPT and:
- creates a "no filesystem" partition from 0 to 1MiB, set `bios_grub` flag on it ;
- creates an FAT32 ESP partition from 8MiB to specified `bootSize` parameter (256MiB by default), set it bootable ;
- creates a primary ext4 partition starting after the boot one and extending to the full disk image
This partition could be booted by a BIOS able to understand GPT layouts and recognizing the MBR at the start.
### How to run determinism analysis on results?
Build your derivation with `--check` to rebuild it and verify it is the same.
If it fails, you will be left with two folders with one having `.check`.
You can use `diffoscope` to see the differences between the folders.
However, `diffoscope` is currently not able to diff two QCOW2 filesystems, thus, it is advised to use raw format.
Even if you use raw disks, `diffoscope` cannot diff the partition table and partitions recursively.
To solve this, you can run `fdisk -l $image` and generate `dd if=$image of=$image-p$i.raw skip=$start count=$sectors` for each `(start, sectors)` listed in the `fdisk` output. Now, you will have each partition as a separate file and you can compare them in pairs.
*/
{ pkgs
, lib
, # The NixOS configuration to be installed onto the disk image.
config
, # The size of the disk, in megabytes.
# if "auto" size is calculated based on the contents copied to it and
# additionalSpace is taken into account.
diskSize ? "auto"
, # additional disk space to be added to the image if diskSize "auto"
# is used
additionalSpace ? "512M"
, # size of the boot partition, is only used if partitionTableType is
# either "efi" or "hybrid"
# This will be undersized slightly, as this is actually the offset of
# the end of the partition. Generally it will be 1MiB smaller.
bootSize ? "256M"
, # The files and directories to be placed in the target file system.
# This is a list of attribute sets {source, target, mode, user, group} where
# `source' is the file system object (regular file or directory) to be
# grafted in the file system at path `target', `mode' is a string containing
# the permissions that will be set (ex. "755"), `user' and `group' are the
# user and group name that will be set as owner of the files.
# `mode', `user', and `group' are optional.
# When setting one of `user' or `group', the other needs to be set too.
contents ? []
, # Type of partition table to use; described in the `Image Partitioning` section above.
partitionTableType ? "legacy"
, # Whether to invoke `switch-to-configuration boot` during image creation
installBootLoader ? true
, # Whether to output have EFIVARS available in $out/efi-vars.fd and use it during disk creation
touchEFIVars ? false
, # OVMF firmware derivation
OVMF ? pkgs.OVMF.fd
, # EFI firmware
efiFirmware ? OVMF.firmware
, # EFI variables
efiVariables ? OVMF.variables
, # The root file system type.
fsType ? "ext4"
, # Filesystem label
label ? if onlyNixStore then "nix-store" else "nixos"
, # The initial NixOS configuration file to be copied to
# /etc/nixos/configuration.nix.
configFile ? null
, # Shell code executed after the VM has finished.
postVM ? ""
, # Guest memory size
memSize ? 1024
, # Copy the contents of the Nix store to the root of the image and
# skip further setup. Incompatible with `contents`,
# `installBootLoader` and `configFile`.
onlyNixStore ? false
, name ? "nixos-disk-image"
, # Disk image format, one of qcow2, qcow2-compressed, vdi, vpc, raw.
format ? "raw"
# Whether to fix:
# - GPT Disk Unique Identifier (diskGUID)
# - GPT Partition Unique Identifier: depends on the layout, root partition UUID can be controlled through `rootGPUID` option
# - GPT Partition Type Identifier: fixed according to the layout, e.g. ESP partition, etc. through `parted` invocation.
# - Filesystem Unique Identifier when fsType = ext4 for *root partition*.
# BIOS/MBR support is "best effort" at the moment.
# Boot partitions may not be deterministic.
# Also, to fix last time checked of the ext4 partition if fsType = ext4.
, deterministic ? true
# GPT Partition Unique Identifier for root partition.
, rootGPUID ? "F222513B-DED1-49FA-B591-20CE86A2FE7F"
# When fsType = ext4, this is the root Filesystem Unique Identifier.
# TODO: support other filesystems someday.
, rootFSUID ? (if fsType == "ext4" then rootGPUID else null)
, # Whether a nix channel based on the current source tree should be
# made available inside the image. Useful for interactive use of nix
# utils, but changes the hash of the image when the sources are
# updated.
copyChannel ? true
, # Additional store paths to copy to the image's store.
additionalPaths ? []
}:
assert (lib.assertOneOf "partitionTableType" partitionTableType [ "legacy" "legacy+gpt" "efi" "efixbootldr" "hybrid" "none" ]);
assert (lib.assertMsg (fsType == "ext4" && deterministic -> rootFSUID != null) "In deterministic mode with a ext4 partition, rootFSUID must be non-null, by default, it is equal to rootGPUID.");
# We use -E offset=X below, which is only supported by e2fsprogs
assert (lib.assertMsg (partitionTableType != "none" -> fsType == "ext4") "to produce a partition table, we need to use -E offset flag which is support only for fsType = ext4");
assert (lib.assertMsg (touchEFIVars -> partitionTableType == "hybrid" || partitionTableType == "efi" || partitionTableType == "efixbootldr" || partitionTableType == "legacy+gpt") "EFI variables can be used only with a partition table of type: hybrid, efi, efixbootldr, or legacy+gpt.");
# If only Nix store image, then: contents must be empty, configFile must be unset, and we should no install bootloader.
assert (lib.assertMsg (onlyNixStore -> contents == [] && configFile == null && !installBootLoader) "In a only Nix store image, the contents must be empty, no configuration must be provided and no bootloader should be installed.");
# Either both or none of {user,group} need to be set
assert (lib.assertMsg (lib.all
(attrs: ((attrs.user or null) == null)
== ((attrs.group or null) == null))
contents) "Contents of the disk image should set none of {user, group} or both at the same time.");
with lib;
let format' = format; in let
format = if format' == "qcow2-compressed" then "qcow2" else format';
compress = optionalString (format' == "qcow2-compressed") "-c";
filename = "nixos." + {
qcow2 = "qcow2";
vdi = "vdi";
vpc = "vhd";
raw = "img";
}.${format} or format;
rootPartition = { # switch-case
legacy = "1";
"legacy+gpt" = "2";
efi = "2";
efixbootldr = "3";
hybrid = "3";
}.${partitionTableType};
partitionDiskScript = { # switch-case
legacy = ''
parted --script $diskImage -- \
mklabel msdos \
mkpart primary ext4 1MiB -1
'';
"legacy+gpt" = ''
parted --script $diskImage -- \
mklabel gpt \
mkpart no-fs 1MB 2MB \
set 1 bios_grub on \
align-check optimal 1 \
mkpart primary ext4 2MB -1 \
align-check optimal 2 \
print
${optionalString deterministic ''
sgdisk \
--disk-guid=97FD5997-D90B-4AA3-8D16-C1723AEA73C \
--partition-guid=1:1C06F03B-704E-4657-B9CD-681A087A2FDC \
--partition-guid=2:970C694F-AFD0-4B99-B750-CDB7A329AB6F \
--partition-guid=3:${rootGPUID} \
$diskImage
''}
'';
efi = ''
parted --script $diskImage -- \
mklabel gpt \
mkpart ESP fat32 8MiB ${bootSize} \
set 1 boot on \
mkpart primary ext4 ${bootSize} -1
${optionalString deterministic ''
sgdisk \
--disk-guid=97FD5997-D90B-4AA3-8D16-C1723AEA73C \
--partition-guid=1:1C06F03B-704E-4657-B9CD-681A087A2FDC \
--partition-guid=2:${rootGPUID} \
$diskImage
''}
'';
efixbootldr = ''
parted --script $diskImage -- \
mklabel gpt \
mkpart ESP fat32 8MiB 100MiB \
set 1 boot on \
mkpart BOOT fat32 100MiB ${bootSize} \
set 2 bls_boot on \
mkpart ROOT ext4 ${bootSize} -1
${optionalString deterministic ''
sgdisk \
--disk-guid=97FD5997-D90B-4AA3-8D16-C1723AEA73C \
--partition-guid=1:1C06F03B-704E-4657-B9CD-681A087A2FDC \
--partition-guid=2:970C694F-AFD0-4B99-B750-CDB7A329AB6F \
--partition-guid=3:${rootGPUID} \
$diskImage
''}
'';
hybrid = ''
parted --script $diskImage -- \
mklabel gpt \
mkpart ESP fat32 8MiB ${bootSize} \
set 1 boot on \
mkpart no-fs 0 1024KiB \
set 2 bios_grub on \
mkpart primary ext4 ${bootSize} -1
${optionalString deterministic ''
sgdisk \
--disk-guid=97FD5997-D90B-4AA3-8D16-C1723AEA73C \
--partition-guid=1:1C06F03B-704E-4657-B9CD-681A087A2FDC \
--partition-guid=2:970C694F-AFD0-4B99-B750-CDB7A329AB6F \
--partition-guid=3:${rootGPUID} \
$diskImage
''}
'';
none = "";
}.${partitionTableType};
useEFIBoot = touchEFIVars;
nixpkgs = cleanSource pkgs.path;
# FIXME: merge with channel.nix / make-channel.nix.
channelSources = pkgs.runCommand "nixos-${config.system.nixos.version}" {} ''
mkdir -p $out
cp -prd ${nixpkgs.outPath} $out/nixos
chmod -R u+w $out/nixos
if [ ! -e $out/nixos/nixpkgs ]; then
ln -s . $out/nixos/nixpkgs
fi
rm -rf $out/nixos/.git
echo -n ${config.system.nixos.versionSuffix} > $out/nixos/.version-suffix
'';
binPath = with pkgs; makeBinPath (
[ rsync
util-linux
parted
e2fsprogs
lkl
config.system.build.nixos-install
config.system.build.nixos-enter
nix
systemdMinimal
]
++ lib.optional deterministic gptfdisk
++ stdenv.initialPath);
# I'm preserving the line below because I'm going to search for it across nixpkgs to consolidate
# image building logic. The comment right below this now appears in 4 different places in nixpkgs :)
# !!! should use XML.
sources = map (x: x.source) contents;
targets = map (x: x.target) contents;
modes = map (x: x.mode or "''") contents;
users = map (x: x.user or "''") contents;
groups = map (x: x.group or "''") contents;
basePaths = [ config.system.build.toplevel ]
++ lib.optional copyChannel channelSources;
additionalPaths' = subtractLists basePaths additionalPaths;
closureInfo = pkgs.closureInfo {
rootPaths = basePaths ++ additionalPaths';
};
blockSize = toString (4 * 1024); # ext4fs block size (not block device sector size)
prepareImage = ''
export PATH=${binPath}
# Yes, mkfs.ext4 takes different units in different contexts. Fun.
sectorsToKilobytes() {
echo $(( ( "$1" * 512 ) / 1024 ))
}
sectorsToBytes() {
echo $(( "$1" * 512 ))
}
# Given lines of numbers, adds them together
sum_lines() {
local acc=0
while read -r number; do
acc=$((acc+number))
done
echo "$acc"
}
mebibyte=$(( 1024 * 1024 ))
# Approximative percentage of reserved space in an ext4 fs over 512MiB.
# 0.05208587646484375
# × 1000, integer part: 52
compute_fudge() {
echo $(( $1 * 52 / 1000 ))
}
mkdir $out
root="$PWD/root"
mkdir -p $root
# Copy arbitrary other files into the image
# Semi-shamelessly copied from make-etc.sh. I (@copumpkin) shall factor this stuff out as part of
# https://github.com/NixOS/nixpkgs/issues/23052.
set -f
sources_=(${concatStringsSep " " sources})
targets_=(${concatStringsSep " " targets})
modes_=(${concatStringsSep " " modes})
set +f
for ((i = 0; i < ''${#targets_[@]}; i++)); do
source="''${sources_[$i]}"
target="''${targets_[$i]}"
mode="''${modes_[$i]}"
if [ -n "$mode" ]; then
rsync_chmod_flags="--chmod=$mode"
else
rsync_chmod_flags=""
fi
# Unfortunately cptofs only supports modes, not ownership, so we can't use
# rsync's --chown option. Instead, we change the ownerships in the
# VM script with chown.
rsync_flags="-a --no-o --no-g $rsync_chmod_flags"
if [[ "$source" =~ '*' ]]; then
# If the source name contains '*', perform globbing.
mkdir -p $root/$target
for fn in $source; do
rsync $rsync_flags "$fn" $root/$target/
done
else
mkdir -p $root/$(dirname $target)
if [ -e $root/$target ]; then
echo "duplicate entry $target -> $source"
exit 1
elif [ -d $source ]; then
# Append a slash to the end of source to get rsync to copy the
# directory _to_ the target instead of _inside_ the target.
# (See `man rsync`'s note on a trailing slash.)
rsync $rsync_flags $source/ $root/$target
else
rsync $rsync_flags $source $root/$target
fi
fi
done
export HOME=$TMPDIR
# Provide a Nix database so that nixos-install can copy closures.
export NIX_STATE_DIR=$TMPDIR/state
nix-store --load-db < ${closureInfo}/registration
chmod 755 "$TMPDIR"
echo "running nixos-install..."
nixos-install --root $root --no-bootloader --no-root-passwd \
--system ${config.system.build.toplevel} \
${if copyChannel then "--channel ${channelSources}" else "--no-channel-copy"} \
--substituters ""
${optionalString (additionalPaths' != []) ''
nix --extra-experimental-features nix-command copy --to $root --no-check-sigs ${concatStringsSep " " additionalPaths'}
''}
diskImage=nixos.raw
${if diskSize == "auto" then ''
${if partitionTableType == "efi" || partitionTableType == "efixbootldr" || partitionTableType == "hybrid" then ''
# Add the GPT at the end
gptSpace=$(( 512 * 34 * 1 ))
# Normally we'd need to account for alignment and things, if bootSize
# represented the actual size of the boot partition. But it instead
# represents the offset at which it ends.
# So we know bootSize is the reserved space in front of the partition.
reservedSpace=$(( gptSpace + $(numfmt --from=iec '${bootSize}') ))
'' else if partitionTableType == "legacy+gpt" then ''
# Add the GPT at the end
gptSpace=$(( 512 * 34 * 1 ))
# And include the bios_grub partition; the ext4 partition starts at 2MB exactly.
reservedSpace=$(( gptSpace + 2 * mebibyte ))
'' else if partitionTableType == "legacy" then ''
# Add the 1MiB aligned reserved space (includes MBR)
reservedSpace=$(( mebibyte ))
'' else ''
reservedSpace=0
''}
additionalSpace=$(( $(numfmt --from=iec '${additionalSpace}') + reservedSpace ))
# Compute required space in filesystem blocks
diskUsage=$(find . ! -type d -print0 | du --files0-from=- --apparent-size --block-size "${blockSize}" | cut -f1 | sum_lines)
# Each inode takes space!
numInodes=$(find . | wc -l)
# Convert to bytes, inodes take two blocks each!
diskUsage=$(( (diskUsage + 2 * numInodes) * ${blockSize} ))
# Then increase the required space to account for the reserved blocks.
fudge=$(compute_fudge $diskUsage)
requiredFilesystemSpace=$(( diskUsage + fudge ))
diskSize=$(( requiredFilesystemSpace + additionalSpace ))
# Round up to the nearest mebibyte.
# This ensures whole 512 bytes sector sizes in the disk image
# and helps towards aligning partitions optimally.
if (( diskSize % mebibyte )); then
diskSize=$(( ( diskSize / mebibyte + 1) * mebibyte ))
fi
truncate -s "$diskSize" $diskImage
printf "Automatic disk size...\n"
printf " Closure space use: %d bytes\n" $diskUsage
printf " fudge: %d bytes\n" $fudge
printf " Filesystem size needed: %d bytes\n" $requiredFilesystemSpace
printf " Additional space: %d bytes\n" $additionalSpace
printf " Disk image size: %d bytes\n" $diskSize
'' else ''
truncate -s ${toString diskSize}M $diskImage
''}
${partitionDiskScript}
${if partitionTableType != "none" then ''
# Get start & length of the root partition in sectors to $START and $SECTORS.
eval $(partx $diskImage -o START,SECTORS --nr ${rootPartition} --pairs)
mkfs.${fsType} -b ${blockSize} -F -L ${label} $diskImage -E offset=$(sectorsToBytes $START) $(sectorsToKilobytes $SECTORS)K
'' else ''
mkfs.${fsType} -b ${blockSize} -F -L ${label} $diskImage
''}
echo "copying staging root to image..."
cptofs -p ${optionalString (partitionTableType != "none") "-P ${rootPartition}"} \
-t ${fsType} \
-i $diskImage \
$root${optionalString onlyNixStore builtins.storeDir}/* / ||
(echo >&2 "ERROR: cptofs failed. diskSize might be too small for closure."; exit 1)
'';
moveOrConvertImage = ''
${if format == "raw" then ''
mv $diskImage $out/${filename}
'' else ''
${pkgs.qemu-utils}/bin/qemu-img convert -f raw -O ${format} ${compress} $diskImage $out/${filename}
''}
diskImage=$out/${filename}
'';
createEFIVars = ''
efiVars=$out/efi-vars.fd
cp ${efiVariables} $efiVars
chmod 0644 $efiVars
'';
createHydraBuildProducts = ''
mkdir -p $out/nix-support
echo "file ${format}-image $out/${filename}" >> $out/nix-support/hydra-build-products
'';
buildImage = pkgs.vmTools.runInLinuxVM (
pkgs.runCommand name {
preVM = prepareImage + lib.optionalString touchEFIVars createEFIVars;
buildInputs = with pkgs; [ util-linux e2fsprogs dosfstools ];
postVM = moveOrConvertImage + createHydraBuildProducts + postVM;
QEMU_OPTS =
concatStringsSep " " (lib.optional useEFIBoot "-drive if=pflash,format=raw,unit=0,readonly=on,file=${efiFirmware}"
++ lib.optionals touchEFIVars [
"-drive if=pflash,format=raw,unit=1,file=$efiVars"
] ++ lib.optionals (OVMF.systemManagementModeRequired or false) [
"-machine" "q35,smm=on"
"-global" "driver=cfi.pflash01,property=secure,value=on"
]
);
inherit memSize;
} ''
export PATH=${binPath}:$PATH
rootDisk=${if partitionTableType != "none" then "/dev/vda${rootPartition}" else "/dev/vda"}
# It is necessary to set root filesystem unique identifier in advance, otherwise
# bootloader might get the wrong one and fail to boot.
# At the end, we reset again because we want deterministic timestamps.
${optionalString (fsType == "ext4" && deterministic) ''
tune2fs -T now ${optionalString deterministic "-U ${rootFSUID}"} -c 0 -i 0 $rootDisk
''}
# make systemd-boot find ESP without udev
mkdir /dev/block
ln -s /dev/vda1 /dev/block/254:1
mountPoint=/mnt
mkdir $mountPoint
mount $rootDisk $mountPoint
# Create the ESP and mount it. Unlike e2fsprogs, mkfs.vfat doesn't support an
# '-E offset=X' option, so we can't do this outside the VM.
${optionalString (partitionTableType == "efi" || partitionTableType == "hybrid") ''
mkdir -p /mnt/boot
mkfs.vfat -n ESP /dev/vda1
mount /dev/vda1 /mnt/boot
${optionalString touchEFIVars "mount -t efivarfs efivarfs /sys/firmware/efi/efivars"}
''}
${optionalString (partitionTableType == "efixbootldr") ''
mkdir -p /mnt/{boot,efi}
mkfs.vfat -n ESP /dev/vda1
mkfs.vfat -n BOOT /dev/vda2
mount /dev/vda1 /mnt/efi
mount /dev/vda2 /mnt/boot
${optionalString touchEFIVars "mount -t efivarfs efivarfs /sys/firmware/efi/efivars"}
''}
# Install a configuration.nix
mkdir -p /mnt/etc/nixos
${optionalString (configFile != null) ''
cp ${configFile} /mnt/etc/nixos/configuration.nix
''}
${lib.optionalString installBootLoader ''
# In this throwaway resource, we only have /dev/vda, but the actual VM may refer to another disk for bootloader, e.g. /dev/vdb
# Use this option to create a symlink from vda to any arbitrary device you want.
${optionalString (config.boot.loader.grub.enable && config.boot.loader.grub.device != "/dev/vda") ''
mkdir -p $(dirname ${config.boot.loader.grub.device})
ln -s /dev/vda ${config.boot.loader.grub.device}
''}
# Set up core system link, bootloader (sd-boot, GRUB, uboot, etc.), etc.
# NOTE: systemd-boot-builder.py calls nix-env --list-generations which
# clobbers $HOME/.nix-defexpr/channels/nixos This would cause a folder
# /homeless-shelter to show up in the final image which in turn breaks
# nix builds in the target image if sandboxing is turned off (through
# __noChroot for example).
export HOME=$TMPDIR
NIXOS_INSTALL_BOOTLOADER=1 nixos-enter --root $mountPoint -- /nix/var/nix/profiles/system/bin/switch-to-configuration boot
# The above scripts will generate a random machine-id and we don't want to bake a single ID into all our images
rm -f $mountPoint/etc/machine-id
''}
# Set the ownerships of the contents. The modes are set in preVM.
# No globbing on targets, so no need to set -f
targets_=(${concatStringsSep " " targets})
users_=(${concatStringsSep " " users})
groups_=(${concatStringsSep " " groups})
for ((i = 0; i < ''${#targets_[@]}; i++)); do
target="''${targets_[$i]}"
user="''${users_[$i]}"
group="''${groups_[$i]}"
if [ -n "$user$group" ]; then
# We have to nixos-enter since we need to use the user and group of the VM
nixos-enter --root $mountPoint -- chown -R "$user:$group" "$target"
fi
done
umount -R /mnt
# Make sure resize2fs works. Note that resize2fs has stricter criteria for resizing than a normal
# mount, so the `-c 0` and `-i 0` don't affect it. Setting it to `now` doesn't produce deterministic
# output, of course, but we can fix that when/if we start making images deterministic.
# In deterministic mode, this is fixed to 1970-01-01 (UNIX timestamp 0).
# This two-step approach is necessary otherwise `tune2fs` will want a fresher filesystem to perform
# some changes.
${optionalString (fsType == "ext4") ''
tune2fs -T now ${optionalString deterministic "-U ${rootFSUID}"} -c 0 -i 0 $rootDisk
${optionalString deterministic "tune2fs -f -T 19700101 $rootDisk"}
''}
''
);
in
if onlyNixStore then
pkgs.runCommand name {}
(prepareImage + moveOrConvertImage + createHydraBuildProducts + postVM)
else buildImage