lmb: make LMB memory map persistent and global

The current LMB API's for allocating and reserving memory use a
per-caller based memory view. Memory allocated by a caller can then be
overwritten by another caller. Make these allocations and reservations
persistent using the alloced list data structure.

Two alloced lists are declared -- one for the available(free) memory,
and one for the used memory. Once full, the list can then be extended
at runtime.

[sjg: Use a stack to store pointer of lmb struct when running lmb tests]

Signed-off-by: Sughosh Ganu <sughosh.ganu@linaro.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
[sjg: Optimise the logic to add a region in lmb_add_region_flags()]
This commit is contained in:
Sughosh Ganu
2024-08-26 17:29:18 +05:30
committed by Tom Rini
parent a368850ae2
commit ed17a33fed
39 changed files with 717 additions and 749 deletions

View File

@@ -3,6 +3,7 @@
#define _LINUX_LMB_H
#ifdef __KERNEL__
#include <alist.h>
#include <asm/types.h>
#include <asm/u-boot.h>
#include <linux/bitops.h>
@@ -24,97 +25,62 @@ enum lmb_flags {
};
/**
* struct lmb_property - Description of one region.
* struct lmb_region - Description of one region.
*
* @base: Base address of the region.
* @size: Size of the region
* @flags: memory region attributes
*/
struct lmb_property {
struct lmb_region {
phys_addr_t base;
phys_size_t size;
enum lmb_flags flags;
};
/*
* For regions size management, see LMB configuration in KConfig
* all the #if test are done with CONFIG_LMB_USE_MAX_REGIONS (boolean)
*
* case 1. CONFIG_LMB_USE_MAX_REGIONS is defined (legacy mode)
* => CONFIG_LMB_MAX_REGIONS is used to configure the region size,
* directly in the array lmb_region.region[], with the same
* configuration for memory and reserved regions.
*
* case 2. CONFIG_LMB_USE_MAX_REGIONS is not defined, the size of each
* region is configurated *independently* with
* => CONFIG_LMB_MEMORY_REGIONS: struct lmb.memory_regions
* => CONFIG_LMB_RESERVED_REGIONS: struct lmb.reserved_regions
* lmb_region.region is only a pointer to the correct buffer,
* initialized in lmb_init(). This configuration is useful to manage
* more reserved memory regions with CONFIG_LMB_RESERVED_REGIONS.
*/
/**
* struct lmb_region - Description of a set of region.
* struct lmb - The LMB structure
*
* @cnt: Number of regions.
* @max: Size of the region array, max value of cnt.
* @region: Array of the region properties
*/
struct lmb_region {
unsigned long cnt;
unsigned long max;
#if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
struct lmb_property region[CONFIG_LMB_MAX_REGIONS];
#else
struct lmb_property *region;
#endif
};
/**
* struct lmb - Logical memory block handle.
*
* Clients provide storage for Logical memory block (lmb) handles.
* The content of the structure is managed by the lmb library.
* A lmb struct is initialized by lmb_init() functions.
* The lmb struct is passed to all other lmb APIs.
*
* @memory: Description of memory regions.
* @reserved: Description of reserved regions.
* @memory_regions: Array of the memory regions (statically allocated)
* @reserved_regions: Array of the reserved regions (statically allocated)
* @free_mem: List of free memory regions
* @used_mem: List of used/reserved memory regions
*/
struct lmb {
struct lmb_region memory;
struct lmb_region reserved;
#if !IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
struct lmb_property memory_regions[CONFIG_LMB_MEMORY_REGIONS];
struct lmb_property reserved_regions[CONFIG_LMB_RESERVED_REGIONS];
#endif
struct alist free_mem;
struct alist used_mem;
};
void lmb_init(struct lmb *lmb);
void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob);
void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
phys_size_t size, void *fdt_blob);
long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size);
long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size);
/**
* lmb_init() - Initialise the LMB module
*
* Initialise the LMB lists needed for keeping the memory map. There
* are two lists, in form of alloced list data structure. One for the
* available memory, and one for the used memory. Initialise the two
* lists as part of board init. Add memory to the available memory
* list and reserve common areas by adding them to the used memory
* list.
*
* Return: 0 on success, -ve on error
*/
int lmb_init(void);
void lmb_init_and_reserve(struct bd_info *bd, void *fdt_blob);
void lmb_init_and_reserve_range(phys_addr_t base, phys_size_t size,
void *fdt_blob);
long lmb_add(phys_addr_t base, phys_size_t size);
long lmb_reserve(phys_addr_t base, phys_size_t size);
/**
* lmb_reserve_flags - Reserve one region with a specific flags bitfield.
*
* @lmb: the logical memory block struct
* @base: base address of the memory region
* @size: size of the memory region
* @flags: flags for the memory region
* Return: 0 if OK, > 0 for coalesced region or a negative error code.
*/
long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base,
phys_size_t size, enum lmb_flags flags);
phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align);
phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align,
phys_addr_t max_addr);
phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size);
phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr);
long lmb_reserve_flags(phys_addr_t base, phys_size_t size,
enum lmb_flags flags);
phys_addr_t lmb_alloc(phys_size_t size, ulong align);
phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr);
phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size);
phys_size_t lmb_get_free_size(phys_addr_t addr);
/**
* lmb_is_reserved_flags() - test if address is in reserved region with flag bits set
@@ -122,21 +88,24 @@ phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr);
* The function checks if a reserved region comprising @addr exists which has
* all flag bits set which are set in @flags.
*
* @lmb: the logical memory block struct
* @addr: address to be tested
* @flags: bitmap with bits to be tested
* Return: 1 if matching reservation exists, 0 otherwise
*/
int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags);
int lmb_is_reserved_flags(phys_addr_t addr, int flags);
long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size);
long lmb_free(phys_addr_t base, phys_size_t size);
void lmb_dump_all(struct lmb *lmb);
void lmb_dump_all_force(struct lmb *lmb);
void lmb_dump_all(void);
void lmb_dump_all_force(void);
void board_lmb_reserve(struct lmb *lmb);
void arch_lmb_reserve(struct lmb *lmb);
void arch_lmb_reserve_generic(struct lmb *lmb, ulong sp, ulong end, ulong align);
void board_lmb_reserve(void);
void arch_lmb_reserve(void);
void arch_lmb_reserve_generic(ulong sp, ulong end, ulong align);
struct lmb *lmb_get(void);
int lmb_push(struct lmb *store);
void lmb_pop(struct lmb *store);
#endif /* __KERNEL__ */