Files
u-boot/common/spl/spl_fit.c
Mikhail Kshevetskiy 8bb9c275c4 common/spl: improve error handling in spl_fit
This fix a possible NULL pointer dereference.

There is also a risk of memory leaking within the same portion of code.
The leak will happen if loaded image is bad or damaged. In this case
u-boot-spl will try booting from the other available media. Unfortunately
resources allocated for previous boot media will NOT be freed.

We can't fix that issue as the memory allocation mechanism used here
is unknown. It can be different kinds of malloc() or something else.

To somewhat reduce memory consumption, one can try to reuse previously
allocated memory as it's done in board_spl_fit_buffer_addr() from
test/image/spl_load.c.

The corresponding comment was put to the code as well.

Signed-off-by: Mikhail Kshevetskiy <mikhail.kshevetskiy@iopsys.eu>
Reviewed-by: Anshul Dalal <anshuld@ti.com>
2025-06-19 11:01:51 -06:00

1021 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#include <errno.h>
#include <fpga.h>
#include <gzip.h>
#include <image.h>
#include <log.h>
#include <memalign.h>
#include <mapmem.h>
#include <spl.h>
#include <upl.h>
#include <sysinfo.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <linux/libfdt.h>
#include <linux/printk.h>
DECLARE_GLOBAL_DATA_PTR;
struct spl_fit_info {
const void *fit; /* Pointer to a valid FIT blob */
size_t ext_data_offset; /* Offset to FIT external data (end of FIT) */
int images_node; /* FDT offset to "/images" node */
int conf_node; /* FDT offset to selected configuration node */
};
__weak ulong board_spl_fit_size_align(ulong size)
{
return size;
}
static int find_node_from_desc(const void *fit, int node, const char *str)
{
int child;
if (node < 0)
return -EINVAL;
/* iterate the FIT nodes and find a matching description */
for (child = fdt_first_subnode(fit, node); child >= 0;
child = fdt_next_subnode(fit, child)) {
int len;
const char *desc = fdt_getprop(fit, child, FIT_DESC_PROP, &len);
if (!desc)
continue;
if (!strcmp(desc, str))
return child;
}
return -ENOENT;
}
/**
* spl_fit_get_image_name(): By using the matching configuration subnode,
* retrieve the name of an image, specified by a property name and an index
* into that.
* @fit: Pointer to the FDT blob.
* @images: Offset of the /images subnode.
* @type: Name of the property within the configuration subnode.
* @index: Index into the list of strings in this property.
* @outname: Name of the image
*
* Return: 0 on success, or a negative error number
*/
static int spl_fit_get_image_name(const struct spl_fit_info *ctx,
const char *type, int index,
const char **outname)
{
struct udevice *sysinfo;
const char *name, *str;
__maybe_unused int node;
int len, i;
bool found = true;
name = fdt_getprop(ctx->fit, ctx->conf_node, type, &len);
if (!name) {
debug("cannot find property '%s': %d\n", type, len);
return -EINVAL;
}
str = name;
for (i = 0; i < index; i++) {
str = memchr(str, '\0', name + len - str);
if (!str) {
found = false;
break;
}
str++;
}
if (!found && CONFIG_IS_ENABLED(SYSINFO) && !sysinfo_get(&sysinfo)) {
int rc;
/*
* no string in the property for this index. Check if the
* sysinfo-level code can supply one.
*/
rc = sysinfo_detect(sysinfo);
if (rc)
return rc;
rc = sysinfo_get_fit_loadable(sysinfo, index - i - 1, type,
&str);
if (rc && rc != -ENOENT)
return rc;
if (!rc) {
/*
* The sysinfo provided a name for a loadable.
* Try to match it against the description properties
* first. If no matching node is found, use it as a
* node name.
*/
int node;
int images = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH);
node = find_node_from_desc(ctx->fit, images, str);
if (node > 0)
str = fdt_get_name(ctx->fit, node, NULL);
found = true;
}
}
if (!found) {
debug("no string for index %d\n", index);
return -E2BIG;
}
*outname = str;
return 0;
}
/**
* spl_fit_get_image_node(): By using the matching configuration subnode,
* retrieve the name of an image, specified by a property name and an index
* into that.
* @fit: Pointer to the FDT blob.
* @images: Offset of the /images subnode.
* @type: Name of the property within the configuration subnode.
* @index: Index into the list of strings in this property.
*
* Return: the node offset of the respective image node or a negative
* error number.
*/
static int spl_fit_get_image_node(const struct spl_fit_info *ctx,
const char *type, int index)
{
const char *str;
int err;
int node;
err = spl_fit_get_image_name(ctx, type, index, &str);
if (err)
return err;
debug("%s: '%s'\n", type, str);
node = fdt_subnode_offset(ctx->fit, ctx->images_node, str);
if (node < 0) {
pr_err("cannot find image node '%s': %d\n", str, node);
return -EINVAL;
}
return node;
}
static int get_aligned_image_offset(struct spl_load_info *info, int offset)
{
return ALIGN_DOWN(offset, spl_get_bl_len(info));
}
static int get_aligned_image_overhead(struct spl_load_info *info, int offset)
{
return offset & (spl_get_bl_len(info) - 1);
}
static int get_aligned_image_size(struct spl_load_info *info, int data_size,
int offset)
{
data_size = data_size + get_aligned_image_overhead(info, offset);
return ALIGN(data_size, spl_get_bl_len(info));
}
/**
* load_simple_fit(): load the image described in a certain FIT node
* @info: points to information about the device to load data from
* @fit_offset: the offset of the FIT image on the device
* @ctx: points to the FIT context structure
* @node: offset of the DT node describing the image to load (relative
* to @fit)
* @image_info: will be filled with information about the loaded image
* If the FIT node does not contain a "load" (address) property,
* the image gets loaded to the address pointed to by the
* load_addr member in this struct, if load_addr is not 0
*
* Return: 0 on success, -EBADSLT if this image is not the correct phase
* (for CONFIG_BOOTMETH_VBE_SIMPLE_FW), or another negative error number on
* other error.
*/
static int load_simple_fit(struct spl_load_info *info, ulong fit_offset,
const struct spl_fit_info *ctx, int node,
struct spl_image_info *image_info)
{
int offset;
size_t length;
int len;
ulong size;
ulong load_addr;
void *load_ptr;
void *src;
ulong overhead;
uint8_t image_comp = -1, type = -1;
const void *data;
const void *fit = ctx->fit;
bool external_data = false;
log_debug("starting\n");
if (CONFIG_IS_ENABLED(BOOTMETH_VBE) &&
xpl_get_phase(info) != IH_PHASE_NONE) {
enum image_phase_t phase;
int ret;
ret = fit_image_get_phase(fit, node, &phase);
/* if the image is for any phase, let's use it */
if (ret == -ENOENT || phase == xpl_get_phase(info)) {
log_debug("found\n");
} else if (ret < 0) {
log_debug("err=%d\n", ret);
return ret;
} else {
log_debug("- phase mismatch, skipping this image\n");
return -EBADSLT;
}
}
if (IS_ENABLED(CONFIG_SPL_FPGA) ||
(IS_ENABLED(CONFIG_SPL_OS_BOOT) && spl_decompression_enabled())) {
if (fit_image_get_type(fit, node, &type))
puts("Cannot get image type.\n");
else
debug("%s ", genimg_get_type_name(type));
}
if (spl_decompression_enabled()) {
fit_image_get_comp(fit, node, &image_comp);
debug("%s ", genimg_get_comp_name(image_comp));
}
if (fit_image_get_load(fit, node, &load_addr)) {
if (!image_info->load_addr) {
printf("Can't load %s: No load address and no buffer\n",
fit_get_name(fit, node, NULL));
return -ENOBUFS;
}
load_addr = image_info->load_addr;
}
if (!fit_image_get_data_position(fit, node, &offset)) {
external_data = true;
} else if (!fit_image_get_data_offset(fit, node, &offset)) {
log_debug("read offset %x = offset from fit %lx\n",
offset, (ulong)offset + ctx->ext_data_offset);
offset += ctx->ext_data_offset;
external_data = true;
}
if (external_data) {
ulong read_offset;
void *src_ptr;
/* External data */
if (fit_image_get_data_size(fit, node, &len))
return -ENOENT;
/* Dont bother to copy 0 byte data, but warn, though */
if (!len) {
log_warning("%s: Skip load '%s': image size is 0!\n",
__func__, fit_get_name(fit, node, NULL));
return 0;
}
if (spl_decompression_enabled() &&
(image_comp == IH_COMP_GZIP || image_comp == IH_COMP_LZMA))
src_ptr = map_sysmem(ALIGN(CONFIG_SYS_LOAD_ADDR, ARCH_DMA_MINALIGN), len);
else
src_ptr = map_sysmem(ALIGN(load_addr, ARCH_DMA_MINALIGN), len);
length = len;
overhead = get_aligned_image_overhead(info, offset);
size = get_aligned_image_size(info, length, offset);
read_offset = fit_offset + get_aligned_image_offset(info,
offset);
log_debug("reading from offset %x / %lx size %lx to %p: ",
offset, read_offset, size, src_ptr);
if (info->read(info, read_offset, size, src_ptr) < length)
return -EIO;
debug("External data: dst=%p, offset=%x, size=%lx\n",
src_ptr, offset, (unsigned long)length);
src = src_ptr + overhead;
} else {
/* Embedded data */
if (fit_image_get_emb_data(fit, node, &data, &length)) {
puts("Cannot get image data/size\n");
return -ENOENT;
}
debug("Embedded data: dst=%lx, size=%lx\n", load_addr,
(unsigned long)length);
src = (void *)data; /* cast away const */
}
if (CONFIG_IS_ENABLED(FIT_SIGNATURE)) {
printf("## Checking hash(es) for Image %s ... ",
fit_get_name(fit, node, NULL));
if (!fit_image_verify_with_data(fit, node, gd_fdt_blob(), src,
length))
return -EPERM;
puts("OK\n");
}
if (CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS))
board_fit_image_post_process(fit, node, &src, &length);
load_ptr = map_sysmem(load_addr, length);
if (IS_ENABLED(CONFIG_SPL_GZIP) && image_comp == IH_COMP_GZIP) {
size = length;
if (gunzip(load_ptr, CONFIG_SYS_BOOTM_LEN, src, &size)) {
puts("Uncompressing error\n");
return -EIO;
}
length = size;
} else if (IS_ENABLED(CONFIG_SPL_LZMA) && image_comp == IH_COMP_LZMA) {
size = CONFIG_SYS_BOOTM_LEN;
ulong loadEnd;
if (image_decomp(IH_COMP_LZMA, CONFIG_SYS_LOAD_ADDR, 0, 0,
load_ptr, src, length, size, &loadEnd)) {
puts("Uncompressing error\n");
return -EIO;
}
length = loadEnd - CONFIG_SYS_LOAD_ADDR;
} else {
memcpy(load_ptr, src, length);
}
if (image_info) {
ulong entry_point;
image_info->load_addr = load_addr;
image_info->size = length;
if (!fit_image_get_entry(fit, node, &entry_point))
image_info->entry_point = entry_point;
else
image_info->entry_point = FDT_ERROR;
}
log_debug("- done loading\n");
upl_add_image(fit, node, load_addr, length);
return 0;
}
static bool os_takes_devicetree(uint8_t os)
{
switch (os) {
case IH_OS_U_BOOT:
return true;
case IH_OS_LINUX:
return IS_ENABLED(CONFIG_SPL_OS_BOOT) ||
IS_ENABLED(CONFIG_SPL_OPENSBI);
default:
return false;
}
}
__weak int board_spl_fit_append_fdt_skip(const char *name)
{
return 0; /* Do not skip */
}
static int spl_fit_append_fdt(struct spl_image_info *spl_image,
struct spl_load_info *info, ulong offset,
const struct spl_fit_info *ctx)
{
struct spl_image_info image_info;
int node, ret = 0, index = 0;
/*
* Use the address following the image as target address for the
* device tree.
*/
image_info.load_addr = ALIGN(spl_image->load_addr + spl_image->size, 8);
/* Figure out which device tree the board wants to use */
node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index++);
if (node < 0) {
size_t size;
debug("%s: cannot find FDT node\n", __func__);
/*
* U-Boot did not find a device tree inside the FIT image. Use
* the U-Boot device tree instead.
*/
if (!gd->fdt_blob)
return node;
/*
* Make the load-address of the FDT available for the SPL
* framework
*/
size = fdt_totalsize(gd->fdt_blob);
spl_image->fdt_addr = map_sysmem(image_info.load_addr, size);
memcpy(spl_image->fdt_addr, gd->fdt_blob, size);
} else {
ret = load_simple_fit(info, offset, ctx, node, &image_info);
if (ret < 0)
return ret;
spl_image->fdt_addr = phys_to_virt(image_info.load_addr);
}
if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY))
return 0;
#if CONFIG_IS_ENABLED(LOAD_FIT_APPLY_OVERLAY)
void *tmpbuffer = NULL;
for (; ; index++) {
const char *str;
ret = spl_fit_get_image_name(ctx, FIT_FDT_PROP, index, &str);
if (ret == -E2BIG) {
debug("%s: No additional FDT node\n", __func__);
ret = 0;
break;
} else if (ret < 0) {
continue;
}
ret = board_spl_fit_append_fdt_skip(str);
if (ret)
continue;
node = fdt_subnode_offset(ctx->fit, ctx->images_node, str);
if (node < 0) {
debug("%s: unable to find FDT node %d\n",
__func__, index);
continue;
}
if (!tmpbuffer) {
/*
* allocate memory to store the DT overlay
* before it is applied. It may not be used
* depending on how the overlay is stored, so
* don't fail yet if the allocation failed.
*/
size_t size = CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ;
tmpbuffer = malloc_cache_aligned(size);
if (!tmpbuffer)
debug("%s: unable to allocate space for overlays\n",
__func__);
}
image_info.load_addr = (ulong)tmpbuffer;
ret = load_simple_fit(info, offset, ctx, node,
&image_info);
if (ret == -EBADSLT)
continue;
else if (ret < 0)
break;
/* Make room in FDT for changes from the overlay */
ret = fdt_increase_size(spl_image->fdt_addr,
image_info.size);
if (ret < 0)
break;
ret = fdt_overlay_apply_verbose(spl_image->fdt_addr,
(void *)image_info.load_addr);
if (ret) {
pr_err("failed to apply DT overlay %s\n",
fit_get_name(ctx->fit, node, NULL));
break;
}
debug("%s: DT overlay %s applied\n", __func__,
fit_get_name(ctx->fit, node, NULL));
}
free(tmpbuffer);
if (ret)
return ret;
#endif
/* Try to make space, so we can inject details on the loadables */
ret = fdt_shrink_to_minimum(spl_image->fdt_addr, 8192);
if (ret < 0)
return ret;
return ret;
}
static int spl_fit_record_loadable(const struct spl_fit_info *ctx, int index,
void *blob, struct spl_image_info *image)
{
int ret = 0;
const char *name;
int node;
ret = spl_fit_get_image_name(ctx, "loadables", index, &name);
if (ret < 0)
return ret;
node = spl_fit_get_image_node(ctx, "loadables", index);
ret = fdt_record_loadable(blob, index, name, image->load_addr,
image->size, image->entry_point,
fdt_getprop(ctx->fit, node, FIT_TYPE_PROP, NULL),
fdt_getprop(ctx->fit, node, FIT_OS_PROP, NULL),
fdt_getprop(ctx->fit, node, FIT_ARCH_PROP, NULL));
return ret;
}
static int spl_fit_image_is_fpga(const void *fit, int node)
{
const char *type;
if (!IS_ENABLED(CONFIG_SPL_FPGA))
return 0;
type = fdt_getprop(fit, node, FIT_TYPE_PROP, NULL);
if (!type)
return 0;
return !strcmp(type, "fpga");
}
static int spl_fit_image_get_os(const void *fit, int noffset, uint8_t *os)
{
if (!CONFIG_IS_ENABLED(FIT_IMAGE_TINY) || CONFIG_IS_ENABLED(OS_BOOT))
return fit_image_get_os(fit, noffset, os);
const char *name = fdt_getprop(fit, noffset, FIT_OS_PROP, NULL);
if (!name)
return -ENOENT;
/*
* We don't care what the type of the image actually is,
* only whether or not it is U-Boot. This saves some
* space by omitting the large table of OS types.
*/
if (!strcmp(name, "u-boot"))
*os = IH_OS_U_BOOT;
else
*os = IH_OS_INVALID;
return 0;
}
/*
* The purpose of the FIT load buffer is to provide a memory location that is
* independent of the load address of any FIT component.
*/
static void *spl_get_fit_load_buffer(size_t size)
{
void *buf;
buf = malloc_cache_aligned(size);
if (!buf) {
pr_err("Could not get FIT buffer of %lu bytes\n", (ulong)size);
if (IS_ENABLED(CONFIG_SPL_SYS_MALLOC))
pr_err("\tcheck CONFIG_SPL_SYS_MALLOC_SIZE\n");
else
pr_err("\tcheck CONFIG_SPL_SYS_MALLOC_F_LEN\n");
buf = spl_get_load_buffer(0, size);
}
return buf;
}
__weak void *board_spl_fit_buffer_addr(ulong fit_size, int sectors, int bl_len)
{
return spl_get_fit_load_buffer(sectors * bl_len);
}
/*
* Weak default function to allow customizing SPL fit loading for load-only
* use cases by allowing to skip the parsing/processing of the FIT contents
* (so that this can be done separately in a more customized fashion)
*/
__weak bool spl_load_simple_fit_skip_processing(void)
{
return false;
}
/*
* Weak default function to allow fixes after fit header
* is loaded.
*/
__weak void *spl_load_simple_fit_fix_load(const void *fit)
{
return (void *)fit;
}
static void warn_deprecated(const char *msg)
{
printf("DEPRECATED: %s\n", msg);
printf("\tSee https://fitspec.osfw.foundation/\n");
}
static int spl_fit_upload_fpga(struct spl_fit_info *ctx, int node,
struct spl_image_info *fpga_image)
{
const char *compatible;
int ret;
int devnum = 0;
int flags = 0;
debug("FPGA bitstream at: %x, size: %x\n",
(u32)fpga_image->load_addr, fpga_image->size);
compatible = fdt_getprop(ctx->fit, node, "compatible", NULL);
if (!compatible) {
warn_deprecated("'fpga' image without 'compatible' property");
} else {
if (CONFIG_IS_ENABLED(FPGA_LOAD_SECURE))
flags = fpga_compatible2flag(devnum, compatible);
if (strcmp(compatible, "u-boot,fpga-legacy"))
debug("Ignoring compatible = %s property\n",
compatible);
}
ret = fpga_load(devnum, (void *)fpga_image->load_addr,
fpga_image->size, BIT_FULL, flags);
if (ret) {
printf("%s: Cannot load the image to the FPGA\n", __func__);
return ret;
}
puts("FPGA image loaded from FIT\n");
return 0;
}
static int spl_fit_load_fpga(struct spl_fit_info *ctx,
struct spl_load_info *info, ulong offset)
{
int node, ret;
struct spl_image_info fpga_image = {
.load_addr = 0,
};
node = spl_fit_get_image_node(ctx, "fpga", 0);
if (node < 0)
return node;
warn_deprecated("'fpga' property in config node. Use 'loadables'");
/* Load the image and set up the fpga_image structure */
ret = load_simple_fit(info, offset, ctx, node, &fpga_image);
if (ret) {
printf("%s: Cannot load the FPGA: %i\n", __func__, ret);
return ret;
}
return spl_fit_upload_fpga(ctx, node, &fpga_image);
}
static int spl_simple_fit_read(struct spl_fit_info *ctx,
struct spl_load_info *info, ulong offset,
const void *fit_header)
{
unsigned long count, size;
void *buf;
/*
* For FIT with external data, figure out where the external images
* start. This is the base for the data-offset properties in each
* image.
*/
size = ALIGN(fdt_totalsize(fit_header), 4);
size = board_spl_fit_size_align(size);
ctx->ext_data_offset = ALIGN(size, 4);
/*
* So far we only have one block of data from the FIT. Read the entire
* thing, including that first block.
*
* For FIT with data embedded, data is loaded as part of FIT image.
* For FIT with external data, data is not loaded in this step.
*/
size = get_aligned_image_size(info, size, 0);
buf = board_spl_fit_buffer_addr(size, size, 1);
if (!buf) {
/*
* We assume that none of the board will ever use 0x0 as a
* valid load address. Theoretically some board could use it,
* but this is extremely unlikely.
*/
return -EIO;
}
count = info->read(info, offset, size, buf);
if (!count) {
/*
* FIT could not be read. This means we should free the
* memory allocated by board_spl_fit_buffer_addr().
* Unfortunately, we don't know what memory allocation
* mechanism was used:
* - For the SPL_SYS_MALLOC_SIMPLE case nothing could
* be done. The memory just could not be freed.
* - For statically allocated memory buffer we can try
* to reuse previously allocated memory (example:
* board_spl_fit_buffer_addr() function from the
* file test/image/spl_load.c).
* - For normall malloc() -- memory leak can't be easily
* avoided. To somehow reduce memory consumption the
* next calls of board_spl_fit_buffer_addr() could
* reallocate previously allocated buffer and use
* them again. This is somethat similar to the approach
* used for statically allocated buffer.
*
* Please note:
* - FIT images with data placed outside of the FIT
* structure will cause small memory leak (several
* kilobytes),
* - FIT images with data placed inside to the FIT
* structure may cause huge memory leak (up to
* several megabytes). Do NOT use such images!
*/
return -EIO;
}
ctx->fit = buf;
debug("fit read offset %lx, size=%lu, dst=%p, count=%lu\n",
offset, size, buf, count);
return 0;
}
static int spl_simple_fit_parse(struct spl_fit_info *ctx)
{
/* Find the correct subnode under "/configurations" */
ctx->conf_node = fit_find_config_node(ctx->fit);
if (ctx->conf_node < 0)
return -EINVAL;
if (IS_ENABLED(CONFIG_SPL_FIT_SIGNATURE)) {
printf("## Checking hash(es) for config %s ... ",
fit_get_name(ctx->fit, ctx->conf_node, NULL));
if (fit_config_verify(ctx->fit, ctx->conf_node))
return -EPERM;
puts("OK\n");
}
/* find the node holding the images information */
ctx->images_node = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH);
if (ctx->images_node < 0) {
debug("%s: Cannot find /images node: %d\n", __func__,
ctx->images_node);
return -EINVAL;
}
return 0;
}
int spl_load_simple_fit(struct spl_image_info *spl_image,
struct spl_load_info *info, ulong offset, void *fit)
{
struct spl_image_info image_info;
struct spl_fit_info ctx;
int node = -1;
int ret;
int index = 0;
int firmware_node;
ret = spl_simple_fit_read(&ctx, info, offset, fit);
if (ret < 0)
return ret;
/* skip further processing if requested to enable load-only use cases */
if (spl_load_simple_fit_skip_processing())
return 0;
ctx.fit = spl_load_simple_fit_fix_load(ctx.fit);
ret = spl_simple_fit_parse(&ctx);
if (ret < 0)
return ret;
if (IS_ENABLED(CONFIG_SPL_FPGA))
spl_fit_load_fpga(&ctx, info, offset);
/*
* Find the U-Boot image using the following search order:
* - start at 'firmware' (e.g. an ARM Trusted Firmware)
* - fall back 'kernel' (e.g. a Falcon-mode OS boot
* - fall back to using the first 'loadables' entry
*/
if (node < 0)
node = spl_fit_get_image_node(&ctx, FIT_FIRMWARE_PROP, 0);
if (node < 0 && IS_ENABLED(CONFIG_SPL_OS_BOOT))
node = spl_fit_get_image_node(&ctx, FIT_KERNEL_PROP, 0);
if (node < 0) {
debug("could not find firmware image, trying loadables...\n");
node = spl_fit_get_image_node(&ctx, "loadables", 0);
/*
* If we pick the U-Boot image from "loadables", start at
* the second image when later loading additional images.
*/
index = 1;
}
if (node < 0) {
debug("%s: Cannot find u-boot image node: %d\n",
__func__, node);
return -1;
}
/* Load the image and set up the spl_image structure */
ret = load_simple_fit(info, offset, &ctx, node, spl_image);
if (ret)
return ret;
/*
* For backward compatibility, we treat the first node that is
* as a U-Boot image, if no OS-type has been declared.
*/
if (!spl_fit_image_get_os(ctx.fit, node, &spl_image->os))
debug("Image OS is %s\n", genimg_get_os_name(spl_image->os));
else if (!IS_ENABLED(CONFIG_SPL_OS_BOOT))
spl_image->os = IH_OS_U_BOOT;
/*
* Booting a next-stage U-Boot may require us to append the FDT.
* We allow this to fail, as the U-Boot image might embed its FDT.
*/
if (os_takes_devicetree(spl_image->os)) {
ret = spl_fit_append_fdt(spl_image, info, offset, &ctx);
if (ret < 0 && spl_image->os != IH_OS_U_BOOT)
return ret;
}
firmware_node = node;
/* Now check if there are more images for us to load */
for (; ; index++) {
uint8_t os_type = IH_OS_INVALID;
node = spl_fit_get_image_node(&ctx, "loadables", index);
if (node < 0)
break;
/*
* if the firmware is also a loadable, skip it because
* it already has been loaded. This is typically the case with
* u-boot.img generated by mkimage.
*/
if (firmware_node == node)
continue;
image_info.load_addr = 0;
ret = load_simple_fit(info, offset, &ctx, node, &image_info);
if (ret < 0 && ret != -EBADSLT) {
printf("%s: can't load image loadables index %d (ret = %d)\n",
__func__, index, ret);
return ret;
}
if (spl_fit_image_is_fpga(ctx.fit, node))
spl_fit_upload_fpga(&ctx, node, &image_info);
if (!spl_fit_image_get_os(ctx.fit, node, &os_type))
debug("Loadable is %s\n", genimg_get_os_name(os_type));
if (os_takes_devicetree(os_type)) {
spl_fit_append_fdt(&image_info, info, offset, &ctx);
spl_image->fdt_addr = image_info.fdt_addr;
}
/*
* If the "firmware" image did not provide an entry point,
* use the first valid entry point from the loadables.
*/
if (spl_image->entry_point == FDT_ERROR &&
image_info.entry_point != FDT_ERROR)
spl_image->entry_point = image_info.entry_point;
/* Record our loadables into the FDT */
if (!CONFIG_IS_ENABLED(FIT_IMAGE_TINY) &&
xpl_get_fdt_update(info) && spl_image->fdt_addr)
spl_fit_record_loadable(&ctx, index,
spl_image->fdt_addr,
&image_info);
}
/*
* If a platform does not provide CONFIG_SYS_UBOOT_START, U-Boot's
* Makefile will set it to 0 and it will end up as the entry point
* here. What it actually means is: use the load address.
*/
if (spl_image->entry_point == FDT_ERROR || spl_image->entry_point == 0)
spl_image->entry_point = spl_image->load_addr;
spl_image->flags |= SPL_FIT_FOUND;
upl_set_fit_info(map_to_sysmem(ctx.fit), ctx.conf_node,
spl_image->entry_point);
return 0;
}
/* Parse and load full fitImage in SPL */
int spl_load_fit_image(struct spl_image_info *spl_image,
const struct legacy_img_hdr *header)
{
struct bootm_headers images;
const char *fit_uname_config = NULL;
ulong fdt_hack;
const char *uname;
ulong fw_data = 0, dt_data = 0, img_data = 0;
ulong fw_len = 0, dt_len = 0, img_len = 0;
int idx, conf_noffset;
int ret;
#ifdef CONFIG_SPL_FIT_SIGNATURE
images.verify = 1;
#endif
ret = fit_image_load(&images, virt_to_phys((void *)header),
NULL, &fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_STANDALONE, -1,
FIT_LOAD_OPTIONAL, &fw_data, &fw_len);
if (ret >= 0) {
printf("DEPRECATED: 'standalone = ' property.");
printf("Please use either 'firmware =' or 'kernel ='\n");
} else {
ret = fit_image_load(&images, virt_to_phys((void *)header),
NULL, &fit_uname_config, IH_ARCH_DEFAULT,
IH_TYPE_FIRMWARE, -1, FIT_LOAD_OPTIONAL,
&fw_data, &fw_len);
}
if (ret < 0) {
ret = fit_image_load(&images, virt_to_phys((void *)header),
NULL, &fit_uname_config, IH_ARCH_DEFAULT,
IH_TYPE_KERNEL, -1, FIT_LOAD_OPTIONAL,
&fw_data, &fw_len);
}
if (ret < 0)
return ret;
spl_image->size = fw_len;
spl_image->load_addr = fw_data;
if (fit_image_get_entry(header, ret, &spl_image->entry_point))
spl_image->entry_point = fw_data;
if (fit_image_get_os(header, ret, &spl_image->os))
spl_image->os = IH_OS_INVALID;
spl_image->name = genimg_get_os_name(spl_image->os);
debug(PHASE_PROMPT "payload image: %32s load addr: 0x%lx size: %d\n",
spl_image->name, spl_image->load_addr, spl_image->size);
#ifdef CONFIG_SPL_FIT_SIGNATURE
images.verify = 1;
#endif
ret = fit_image_load(&images, virt_to_phys((void *)header), NULL,
&fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_FLATDT,
-1, FIT_LOAD_OPTIONAL, &dt_data, &dt_len);
if (ret >= 0) {
spl_image->fdt_addr = (void *)dt_data;
if (spl_image->os == IH_OS_U_BOOT) {
/* HACK: U-Boot expects FDT at a specific address */
fdt_hack = spl_image->load_addr + spl_image->size;
fdt_hack = (fdt_hack + 3) & ~3;
debug("Relocating FDT to %p\n", spl_image->fdt_addr);
memcpy((void *)fdt_hack, spl_image->fdt_addr, dt_len);
}
}
conf_noffset = fit_conf_get_node((const void *)header,
fit_uname_config);
if (conf_noffset < 0)
return 0;
for (idx = 0;
uname = fdt_stringlist_get((const void *)header, conf_noffset,
FIT_LOADABLE_PROP, idx,
NULL), uname;
idx++) {
#ifdef CONFIG_SPL_FIT_SIGNATURE
images.verify = 1;
#endif
ret = fit_image_load(&images, (ulong)header,
&uname, &fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_LOADABLE, -1,
FIT_LOAD_OPTIONAL_NON_ZERO,
&img_data, &img_len);
if (ret < 0)
return ret;
}
spl_image->flags |= SPL_FIT_FOUND;
upl_set_fit_info(map_to_sysmem(header), conf_noffset,
spl_image->entry_point);
return 0;
}