There are 3 kinds of WpProxy objects:
* the ones that are created as a result of binding a global
from the registry
* the ones that are created as a result of calling into a remote
factory (wp_node_new_from_factory, etc...)
* the ones that are a local implementation of an object
(WpImplNode, etc...) and are exported
Previously the object manager was only able to track the first kind.
With these changes we can now also have globals associated with
WpProxies that were created earlier (and caused the creation of the global).
This saves some resources and reduces round-trips (in case client
code wants to change properties of an object that is locally
implemented, it shouldn't need to do a round-trip through the server)
+ use the pw_proxy API to find the bound id instead
of relying on WpGlobal
This has the advantage that it works also for exported
objects and for objects that have been created by calling
into a remote factory (such as the link-factory), so we can
now know the global id of all proxies, not only the ones
that have been created by the registry.
* rework how global objects are stored in the core
* rework how users get notified about global objects
and proxies of remote global objects
The purpose of this change is to have a class that can manage
objects that are registered in the core or signalled through the
registry. This object can declare interest on certain types
of global objects and only keep & signal those objects that it is
interested in. Additionally, it can prepare proxy features and
asynchronously deliver an 'objects-changed' signal, which is
basically telling us that the list of objects has changed.
This is useful to simplify port proxies management in WpAudioStream.
Now the stream object can declare that it is interested in ports
that have "node.id" == X and the object manager will only maintain
a list of those. Additionally, it will emit the 'objects-changed'
signal when the list of ports is complete, so there is no reason to
do complex operations and core syncs in the WpAudioStream class
in order to figure out when the list of ports is ready.
As a side effect, this also reduces resource management. Now we
don't construct a WpProxy for every global that pipewire reports;
we only construct proxies when there is interest in them!
Another interesting side effect is that we can now register an
object manager at any point in time and get immediately notified
about remote globals that already exist. i.e. when you register
an object manager that is interested in nodes, it will be immediately
notified about all the existing nodes in the graph. This is useful
to avoid race conditions between connecting the signal and objects
beting created in pipewire
In practice we always create a remote and connect to pipewire.
Any other scenario is invalid, therefore, it is not justified
to be confused with so many classes for such small functionality.
This simplifies a lot the modules code.
Also, this commit exposes the pw_core and pw_remote objects
out of WpCore. This is in practice useful when dealing with low-level
pw and spa factories, which are used in the monitors. Let's not
add API wrappers for everything... Bindings will never use this
functionality anyway, since it depends on low level pipewire C API.
It so happens that sometimes the client proxy is created and destroyed
immediately, almost instantly, which causes this code to crash in case
the proxy pointer is gone when our idle callback tries to destroy it.
This change makes the whole operation safe.