WIP Stimulus system

This commit is contained in:
2020-09-26 15:50:34 -07:00
parent 9a0f778db5
commit 00f22c95d0
5 changed files with 97 additions and 35 deletions

View File

@@ -1,5 +1,6 @@
use coremem::{consts, Driver, Flt, mat, meas}; use coremem::{consts, Driver, Flt, mat, meas};
use coremem::geom::{Coord, CylinderZ, Vec2}; use coremem::geom::{Coord, CylinderZ, Vec2, Vec3};
use coremem::stim::{Stimulus, Sinusoid};
fn main() { fn main() {
coremem::init_logging(); coremem::init_logging();
@@ -35,12 +36,12 @@ fn main() {
m_to_um(ferro_inner_rad), m_to_um(ferro_inner_rad),
m_to_um(ferro_outer_rad), m_to_um(ferro_outer_rad),
)); ));
let conductor_region = CylinderZ::new(
Vec2::new(half_width, half_width),
conductor_outer_rad);
// driver.add_term_renderer(); // driver.add_term_renderer();
driver.add_measurement(meas::Label(format!("Conductivity: {}, Imax: {:.2e}", conductivity, peak_current))); driver.add_measurement(meas::Label(format!("Conductivity: {}, Imax: {:.2e}", conductivity, peak_current)));
driver.add_measurement(meas::Current(CylinderZ::new( driver.add_measurement(meas::Current(conductor_region.clone()));
Vec2::new(half_width, half_width),
conductor_outer_rad)
));
driver.add_measurement(meas::Magnetization( driver.add_measurement(meas::Magnetization(
(half_width + ferro_inner_rad + 2.0*feat_size, half_width, half_depth).into() (half_width + ferro_inner_rad + 2.0*feat_size, half_width, half_depth).into()
)); ));
@@ -92,28 +93,11 @@ fn main() {
let boundary = Coord::new(from_m(boundary_xy), from_m(boundary_xy), 20); let boundary = Coord::new(from_m(boundary_xy), from_m(boundary_xy), 20);
driver.add_upml_boundary(boundary); driver.add_upml_boundary(boundary);
driver.add_stimulus(Stimulus::new(
conductor_region.clone(),
Sinusoid::new(Vec3::new(0.0, 0.0, peak_current * 1e-18), 1e9)));
loop { loop {
// let drive_current = peak_current * match driver.state.step_no() {
// 0..=1000 => 1.0,
// 3000..=4000 => -1.0,
// _ => 0.0,
// };
let drive_current = peak_current * 1e-18;
// J = \sigma*E = [Am^-2]
// I = \sigma*E*Area
// E = I / \sigma / Area
//let e = v/(2.0*feat_size);
let area = consts::PI*(conductor_outer_rad*conductor_outer_rad - conductor_inner_rad*conductor_inner_rad);
let e = drive_current/conductivity/area;
for y_px in from_m(half_width-conductor_outer_rad)..from_m(half_width+conductor_outer_rad) {
for x_px in from_m(half_width-conductor_outer_rad)..from_m(half_width+conductor_outer_rad) {
let loc = Coord::new(x_px, y_px, 0);
let d = Vec2::new(to_m(x_px), to_m(y_px)) - center;
if (conductor_inner_rad..conductor_outer_rad).contains(&d.mag()) {
driver.state.impulse_ez(loc, e);
}
}
}
driver.step(); driver.step();
} }
} }

View File

@@ -4,6 +4,7 @@ use crate::geom::{Coord, Vec3};
use crate::meas::{self, AbstractMeasurement}; use crate::meas::{self, AbstractMeasurement};
use crate::render::{self, MultiRenderer, Renderer}; use crate::render::{self, MultiRenderer, Renderer};
use crate::sim::{GenericSim as _, SimState}; use crate::sim::{GenericSim as _, SimState};
use crate::stim::AbstractStimulus;
use log::{info, trace}; use log::{info, trace};
use std::path::PathBuf; use std::path::PathBuf;
@@ -14,25 +15,32 @@ pub struct Driver {
renderer: MultiRenderer, renderer: MultiRenderer,
steps_per_frame: u64, steps_per_frame: u64,
time_spent_stepping: Duration, time_spent_stepping: Duration,
time_spent_on_stimuli: Duration,
time_spent_rendering: Duration, time_spent_rendering: Duration,
measurements: Vec<Box<dyn AbstractMeasurement>>, measurements: Vec<Box<dyn AbstractMeasurement>>,
stimuli: Vec<Box<dyn AbstractStimulus>>,
start_time: SystemTime, start_time: SystemTime,
} }
impl Driver { impl Driver {
// TODO: allow depth
pub fn new(size: Coord, feature_size: Flt) -> Self { pub fn new(size: Coord, feature_size: Flt) -> Self {
Driver { Driver {
state: SimState::new(size, feature_size), state: SimState::new(size, feature_size),
renderer: Default::default(), renderer: Default::default(),
steps_per_frame: 1, steps_per_frame: 1,
time_spent_stepping: Default::default(), time_spent_stepping: Default::default(),
time_spent_on_stimuli: Default::default(),
time_spent_rendering: Default::default(), time_spent_rendering: Default::default(),
measurements: vec![Box::new(meas::Time), Box::new(meas::Meta), Box::new(meas::Energy)], measurements: vec![Box::new(meas::Time), Box::new(meas::Meta), Box::new(meas::Energy)],
stimuli: vec![],
start_time: SystemTime::now(), start_time: SystemTime::now(),
} }
} }
pub fn add_stimulus<S: AbstractStimulus + 'static>(&mut self, s: S) {
self.stimuli.push(Box::new(s))
}
pub fn add_measurement<M: AbstractMeasurement + 'static>(&mut self, m: M) { pub fn add_measurement<M: AbstractMeasurement + 'static>(&mut self, m: M) {
self.measurements.push(Box::new(m)); self.measurements.push(Box::new(m));
} }
@@ -126,6 +134,15 @@ impl Driver {
self.time_spent_rendering += start_time.elapsed().unwrap(); self.time_spent_rendering += start_time.elapsed().unwrap();
trace!("render end"); trace!("render end");
} }
{
trace!("stimuli begin");
let start_time = SystemTime::now();
for stim in &mut *self.stimuli {
stim.apply(&mut self.state);
}
self.time_spent_on_stimuli += start_time.elapsed().unwrap();
}
trace!("step begin"); trace!("step begin");
let start_time = SystemTime::now(); let start_time = SystemTime::now();
self.state.step(); self.state.step();
@@ -133,19 +150,21 @@ impl Driver {
trace!("step end"); trace!("step end");
let step = self.state.step_no(); let step = self.state.step_no();
if step % (10*self.steps_per_frame) == 0 { if step % (10*self.steps_per_frame) == 0 {
let driver_time = self.time_spent_stepping.as_secs_f64() as Flt; let step_time = self.time_spent_stepping.as_secs_f64();
let render_time = self.time_spent_rendering.as_secs_f64() as Flt; let stim_time = self.time_spent_on_stimuli.as_secs_f64();
let overall_time = self.start_time.elapsed().unwrap().as_secs_f64() as Flt; let render_time = self.time_spent_rendering.as_secs_f64();
let fps = (self.state.step_no() as Flt) / overall_time; let overall_time = self.start_time.elapsed().unwrap().as_secs_f64();
let sim_time = self.state.time(); let fps = (self.state.step_no() as f64) / overall_time;
let sim_time = self.state.time() as f64;
info!( info!(
"t={:.2e} frame {:06} fps: {:6.2} (sim: {:.1}s, render: {:.1}s, other: {:.1}s)", "t={:.2e} frame {:06} fps: {:6.2} (sim: {:.1}s, stim: {:.1}s, render: {:.1}s, other: {:.1}s)",
sim_time, sim_time,
step, step,
fps, fps,
driver_time, step_time,
stim_time,
render_time, render_time,
overall_time - driver_time - render_time overall_time - step_time - stim_time - render_time
); );
} }
} }

View File

@@ -183,6 +183,7 @@ pub trait Region {
fn contains(&self, p: Vec3) -> bool; fn contains(&self, p: Vec3) -> bool;
} }
#[derive(Copy, Clone)]
pub struct CylinderZ { pub struct CylinderZ {
center: Vec2, center: Vec2,
radius: Real, radius: Real,

View File

@@ -13,6 +13,7 @@ pub mod mat;
pub mod meas; pub mod meas;
pub mod render; pub mod render;
pub mod sim; pub mod sim;
pub mod stim;
pub use driver::*; pub use driver::*;
pub use mat::*; pub use mat::*;
@@ -65,6 +66,7 @@ pub mod consts {
// Vacuum Permittivity // Vacuum Permittivity
pub const EPS0: Flt = 8.854187812813e-12; // F⋅m1 pub const EPS0: Flt = 8.854187812813e-12; // F⋅m1
pub const PI: Flt = std::f64::consts::PI as Flt; pub const PI: Flt = std::f64::consts::PI as Flt;
pub const TWO_PI: Flt = 2.0 * std::f64::consts::PI as Flt;
pub mod real { pub mod real {
use super::*; use super::*;
pub(crate) fn C() -> Real { pub(crate) fn C() -> Real {

56
src/stim.rs Normal file
View File

@@ -0,0 +1,56 @@
use crate::consts;
use crate::flt::Flt;
use crate::geom::{Region, Vec3};
use crate::sim::GenericSim;
pub trait AbstractStimulus {
// /// Returns a Region over which to apply some net impulse (E).
// /// i.e. the caller will divide E by the volume of the Region and then
// /// apply that to each cell in the region.
// fn e_for(&mut self, sim: &dyn GenericSim) -> (Box<Region>, Vec3);
fn apply(&mut self, sim: &mut dyn GenericSim);
}
pub trait TimeVarying {
/// Retrieve the E impulse to apply at the provided time (in seconds).
fn at(&mut self, t_sec: Flt) -> Vec3;
}
pub struct Stimulus<R, T> {
region: R,
time: T,
}
impl<R, T> Stimulus<R, T> {
pub fn new(region: R, time: T) -> Self {
Self {
region, time
}
}
}
impl<R: Region, T: TimeVarying> AbstractStimulus for Stimulus<R, T> {
fn apply(&mut self, sim: &mut dyn GenericSim) {
unimplemented!()
}
}
pub struct Sinusoid {
amp: Vec3,
omega: Flt,
}
impl Sinusoid {
pub fn new(amp: Vec3, freq: Flt) -> Self {
Self {
amp,
omega: freq * consts::TWO_PI,
}
}
}
impl TimeVarying for Sinusoid {
fn at(&mut self, t_sec: Flt) -> Vec3 {
self.amp * (t_sec * self.omega).sin()
}
}