WIP Stimulus system
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
use coremem::{consts, Driver, Flt, mat, meas};
|
||||
use coremem::geom::{Coord, CylinderZ, Vec2};
|
||||
use coremem::geom::{Coord, CylinderZ, Vec2, Vec3};
|
||||
use coremem::stim::{Stimulus, Sinusoid};
|
||||
|
||||
fn main() {
|
||||
coremem::init_logging();
|
||||
@@ -35,12 +36,12 @@ fn main() {
|
||||
m_to_um(ferro_inner_rad),
|
||||
m_to_um(ferro_outer_rad),
|
||||
));
|
||||
let conductor_region = CylinderZ::new(
|
||||
Vec2::new(half_width, half_width),
|
||||
conductor_outer_rad);
|
||||
// driver.add_term_renderer();
|
||||
driver.add_measurement(meas::Label(format!("Conductivity: {}, Imax: {:.2e}", conductivity, peak_current)));
|
||||
driver.add_measurement(meas::Current(CylinderZ::new(
|
||||
Vec2::new(half_width, half_width),
|
||||
conductor_outer_rad)
|
||||
));
|
||||
driver.add_measurement(meas::Current(conductor_region.clone()));
|
||||
driver.add_measurement(meas::Magnetization(
|
||||
(half_width + ferro_inner_rad + 2.0*feat_size, half_width, half_depth).into()
|
||||
));
|
||||
@@ -92,28 +93,11 @@ fn main() {
|
||||
let boundary = Coord::new(from_m(boundary_xy), from_m(boundary_xy), 20);
|
||||
driver.add_upml_boundary(boundary);
|
||||
|
||||
driver.add_stimulus(Stimulus::new(
|
||||
conductor_region.clone(),
|
||||
Sinusoid::new(Vec3::new(0.0, 0.0, peak_current * 1e-18), 1e9)));
|
||||
|
||||
loop {
|
||||
// let drive_current = peak_current * match driver.state.step_no() {
|
||||
// 0..=1000 => 1.0,
|
||||
// 3000..=4000 => -1.0,
|
||||
// _ => 0.0,
|
||||
// };
|
||||
let drive_current = peak_current * 1e-18;
|
||||
// J = \sigma*E = [Am^-2]
|
||||
// I = \sigma*E*Area
|
||||
// E = I / \sigma / Area
|
||||
//let e = v/(2.0*feat_size);
|
||||
let area = consts::PI*(conductor_outer_rad*conductor_outer_rad - conductor_inner_rad*conductor_inner_rad);
|
||||
let e = drive_current/conductivity/area;
|
||||
for y_px in from_m(half_width-conductor_outer_rad)..from_m(half_width+conductor_outer_rad) {
|
||||
for x_px in from_m(half_width-conductor_outer_rad)..from_m(half_width+conductor_outer_rad) {
|
||||
let loc = Coord::new(x_px, y_px, 0);
|
||||
let d = Vec2::new(to_m(x_px), to_m(y_px)) - center;
|
||||
if (conductor_inner_rad..conductor_outer_rad).contains(&d.mag()) {
|
||||
driver.state.impulse_ez(loc, e);
|
||||
}
|
||||
}
|
||||
}
|
||||
driver.step();
|
||||
}
|
||||
}
|
||||
|
@@ -4,6 +4,7 @@ use crate::geom::{Coord, Vec3};
|
||||
use crate::meas::{self, AbstractMeasurement};
|
||||
use crate::render::{self, MultiRenderer, Renderer};
|
||||
use crate::sim::{GenericSim as _, SimState};
|
||||
use crate::stim::AbstractStimulus;
|
||||
|
||||
use log::{info, trace};
|
||||
use std::path::PathBuf;
|
||||
@@ -14,25 +15,32 @@ pub struct Driver {
|
||||
renderer: MultiRenderer,
|
||||
steps_per_frame: u64,
|
||||
time_spent_stepping: Duration,
|
||||
time_spent_on_stimuli: Duration,
|
||||
time_spent_rendering: Duration,
|
||||
measurements: Vec<Box<dyn AbstractMeasurement>>,
|
||||
stimuli: Vec<Box<dyn AbstractStimulus>>,
|
||||
start_time: SystemTime,
|
||||
}
|
||||
|
||||
impl Driver {
|
||||
// TODO: allow depth
|
||||
pub fn new(size: Coord, feature_size: Flt) -> Self {
|
||||
Driver {
|
||||
state: SimState::new(size, feature_size),
|
||||
renderer: Default::default(),
|
||||
steps_per_frame: 1,
|
||||
time_spent_stepping: Default::default(),
|
||||
time_spent_on_stimuli: Default::default(),
|
||||
time_spent_rendering: Default::default(),
|
||||
measurements: vec![Box::new(meas::Time), Box::new(meas::Meta), Box::new(meas::Energy)],
|
||||
stimuli: vec![],
|
||||
start_time: SystemTime::now(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_stimulus<S: AbstractStimulus + 'static>(&mut self, s: S) {
|
||||
self.stimuli.push(Box::new(s))
|
||||
}
|
||||
|
||||
pub fn add_measurement<M: AbstractMeasurement + 'static>(&mut self, m: M) {
|
||||
self.measurements.push(Box::new(m));
|
||||
}
|
||||
@@ -126,6 +134,15 @@ impl Driver {
|
||||
self.time_spent_rendering += start_time.elapsed().unwrap();
|
||||
trace!("render end");
|
||||
}
|
||||
{
|
||||
trace!("stimuli begin");
|
||||
let start_time = SystemTime::now();
|
||||
for stim in &mut *self.stimuli {
|
||||
stim.apply(&mut self.state);
|
||||
}
|
||||
self.time_spent_on_stimuli += start_time.elapsed().unwrap();
|
||||
}
|
||||
|
||||
trace!("step begin");
|
||||
let start_time = SystemTime::now();
|
||||
self.state.step();
|
||||
@@ -133,19 +150,21 @@ impl Driver {
|
||||
trace!("step end");
|
||||
let step = self.state.step_no();
|
||||
if step % (10*self.steps_per_frame) == 0 {
|
||||
let driver_time = self.time_spent_stepping.as_secs_f64() as Flt;
|
||||
let render_time = self.time_spent_rendering.as_secs_f64() as Flt;
|
||||
let overall_time = self.start_time.elapsed().unwrap().as_secs_f64() as Flt;
|
||||
let fps = (self.state.step_no() as Flt) / overall_time;
|
||||
let sim_time = self.state.time();
|
||||
let step_time = self.time_spent_stepping.as_secs_f64();
|
||||
let stim_time = self.time_spent_on_stimuli.as_secs_f64();
|
||||
let render_time = self.time_spent_rendering.as_secs_f64();
|
||||
let overall_time = self.start_time.elapsed().unwrap().as_secs_f64();
|
||||
let fps = (self.state.step_no() as f64) / overall_time;
|
||||
let sim_time = self.state.time() as f64;
|
||||
info!(
|
||||
"t={:.2e} frame {:06} fps: {:6.2} (sim: {:.1}s, render: {:.1}s, other: {:.1}s)",
|
||||
"t={:.2e} frame {:06} fps: {:6.2} (sim: {:.1}s, stim: {:.1}s, render: {:.1}s, other: {:.1}s)",
|
||||
sim_time,
|
||||
step,
|
||||
fps,
|
||||
driver_time,
|
||||
step_time,
|
||||
stim_time,
|
||||
render_time,
|
||||
overall_time - driver_time - render_time
|
||||
overall_time - step_time - stim_time - render_time
|
||||
);
|
||||
}
|
||||
}
|
||||
|
@@ -183,6 +183,7 @@ pub trait Region {
|
||||
fn contains(&self, p: Vec3) -> bool;
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct CylinderZ {
|
||||
center: Vec2,
|
||||
radius: Real,
|
||||
|
@@ -13,6 +13,7 @@ pub mod mat;
|
||||
pub mod meas;
|
||||
pub mod render;
|
||||
pub mod sim;
|
||||
pub mod stim;
|
||||
|
||||
pub use driver::*;
|
||||
pub use mat::*;
|
||||
@@ -65,6 +66,7 @@ pub mod consts {
|
||||
// Vacuum Permittivity
|
||||
pub const EPS0: Flt = 8.854187812813e-12; // F⋅m−1
|
||||
pub const PI: Flt = std::f64::consts::PI as Flt;
|
||||
pub const TWO_PI: Flt = 2.0 * std::f64::consts::PI as Flt;
|
||||
pub mod real {
|
||||
use super::*;
|
||||
pub(crate) fn C() -> Real {
|
||||
|
56
src/stim.rs
Normal file
56
src/stim.rs
Normal file
@@ -0,0 +1,56 @@
|
||||
use crate::consts;
|
||||
use crate::flt::Flt;
|
||||
use crate::geom::{Region, Vec3};
|
||||
use crate::sim::GenericSim;
|
||||
|
||||
pub trait AbstractStimulus {
|
||||
// /// Returns a Region over which to apply some net impulse (E).
|
||||
// /// i.e. the caller will divide E by the volume of the Region and then
|
||||
// /// apply that to each cell in the region.
|
||||
// fn e_for(&mut self, sim: &dyn GenericSim) -> (Box<Region>, Vec3);
|
||||
fn apply(&mut self, sim: &mut dyn GenericSim);
|
||||
}
|
||||
|
||||
pub trait TimeVarying {
|
||||
/// Retrieve the E impulse to apply at the provided time (in seconds).
|
||||
fn at(&mut self, t_sec: Flt) -> Vec3;
|
||||
}
|
||||
|
||||
pub struct Stimulus<R, T> {
|
||||
region: R,
|
||||
time: T,
|
||||
}
|
||||
|
||||
impl<R, T> Stimulus<R, T> {
|
||||
pub fn new(region: R, time: T) -> Self {
|
||||
Self {
|
||||
region, time
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: Region, T: TimeVarying> AbstractStimulus for Stimulus<R, T> {
|
||||
fn apply(&mut self, sim: &mut dyn GenericSim) {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Sinusoid {
|
||||
amp: Vec3,
|
||||
omega: Flt,
|
||||
}
|
||||
|
||||
impl Sinusoid {
|
||||
pub fn new(amp: Vec3, freq: Flt) -> Self {
|
||||
Self {
|
||||
amp,
|
||||
omega: freq * consts::TWO_PI,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl TimeVarying for Sinusoid {
|
||||
fn at(&mut self, t_sec: Flt) -> Vec3 {
|
||||
self.amp * (t_sec * self.omega).sin()
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user