move spirv_backend/sim.rs -> coremem_types/step.rs
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
use crate::sim::{StepEContext, StepHContext, VolumeSampleNeg, VolumeSamplePos};
|
||||
use coremem_types::step::{StepEContext, StepHContext, VolumeSampleNeg, VolumeSamplePos};
|
||||
use crate::support::{Array3, Array3Mut, UnsizedArray};
|
||||
use coremem_types::compound::Optional;
|
||||
use coremem_types::mat::Material;
|
||||
|
@@ -13,7 +13,6 @@ pub use spirv_std::glam;
|
||||
use spirv_std::macros::spirv;
|
||||
|
||||
mod adapt;
|
||||
pub mod sim;
|
||||
pub mod support;
|
||||
|
||||
pub use adapt::SerializedSimMeta;
|
||||
|
@@ -1,203 +0,0 @@
|
||||
// use spirv_std::RuntimeArray;
|
||||
use coremem_types::compound::Optional;
|
||||
use coremem_types::mat::Material;
|
||||
use coremem_types::real::Real;
|
||||
use coremem_types::vec::Vec3;
|
||||
|
||||
/// Package the field vectors adjacent to some particular location.
|
||||
/// Particular those at negative offsets from the midpoint.
|
||||
/// This is used in step_e when looking at the H field deltas.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct VolumeSampleNeg<R> {
|
||||
pub mid: Vec3<R>,
|
||||
pub xm1: Optional<Vec3<R>>,
|
||||
pub ym1: Optional<Vec3<R>>,
|
||||
pub zm1: Optional<Vec3<R>>,
|
||||
}
|
||||
|
||||
impl<R: Real> VolumeSampleNeg<R> {
|
||||
/// Calculate the delta in H values amongst this cell and its neighbors (left/up/out)
|
||||
fn delta_h(self) -> FieldDeltas<R> {
|
||||
let mid = self.mid;
|
||||
// let (dfy_dx, dfz_dx) = self.xm1.map(|xm1| {
|
||||
// (mid.y() - xm1.y(), mid.z() - xm1.z())
|
||||
// }).unwrap_or_default();
|
||||
|
||||
// let (dfx_dy, dfz_dy) = self.ym1.map(|ym1| {
|
||||
// (mid.x() - ym1.x(), mid.z() - ym1.z())
|
||||
// }).unwrap_or_default();
|
||||
|
||||
// let (dfx_dz, dfy_dz) = self.zm1.map(|zm1| {
|
||||
// (mid.x() - zm1.x(), mid.y() - zm1.y())
|
||||
// }).unwrap_or_default();
|
||||
|
||||
let (dfy_dx, dfz_dx) = if self.xm1.is_some() {
|
||||
(mid.y() - self.xm1.unwrap().y(), mid.z() - self.xm1.unwrap().z())
|
||||
} else {
|
||||
(R::zero(), R::zero())
|
||||
};
|
||||
|
||||
let (dfx_dy, dfz_dy) = if self.ym1.is_some() {
|
||||
(mid.x() - self.ym1.unwrap().x(), mid.z() - self.ym1.unwrap().z())
|
||||
} else {
|
||||
(R::zero(), R::zero())
|
||||
};
|
||||
|
||||
let (dfx_dz, dfy_dz) = if self.zm1.is_some() {
|
||||
(mid.x() - self.zm1.unwrap().x(), mid.y() - self.zm1.unwrap().y())
|
||||
} else {
|
||||
(R::zero(), R::zero())
|
||||
};
|
||||
|
||||
FieldDeltas {
|
||||
dfy_dx,
|
||||
dfz_dx,
|
||||
dfx_dy,
|
||||
dfz_dy,
|
||||
dfx_dz,
|
||||
dfy_dz,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Package the field vectors adjacent to some particular location.
|
||||
/// Particular those at positive offsets from the midpoint.
|
||||
/// This is used in step_h when looking at the E field deltas.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct VolumeSamplePos<R> {
|
||||
pub mid: Vec3<R>,
|
||||
pub xp1: Optional<Vec3<R>>,
|
||||
pub yp1: Optional<Vec3<R>>,
|
||||
pub zp1: Optional<Vec3<R>>
|
||||
}
|
||||
|
||||
impl<R: Real> VolumeSamplePos<R> {
|
||||
/// Calculate the delta in E values amongst this cell and its neighbors (right/down/in)
|
||||
fn delta_e(self) -> FieldDeltas<R> {
|
||||
let mid = self.mid;
|
||||
// let (dfy_dx, dfz_dx) = self.xp1.map(|xp1| {
|
||||
// (xp1.y() - mid.y(), xp1.z() - mid.z())
|
||||
// }).unwrap_or_default();
|
||||
|
||||
// let (dfx_dy, dfz_dy) = self.yp1.map(|yp1| {
|
||||
// (yp1.x() - mid.x(), yp1.z() - mid.z())
|
||||
// }).unwrap_or_default();
|
||||
|
||||
// let (dfx_dz, dfy_dz) = self.zp1.map(|zp1| {
|
||||
// (zp1.x() - mid.x(), zp1.y() - mid.y())
|
||||
// }).unwrap_or_default();
|
||||
|
||||
let (dfy_dx, dfz_dx) = if self.xp1.is_some() {
|
||||
(self.xp1.unwrap().y() - mid.y(), self.xp1.unwrap().z() - mid.z())
|
||||
} else {
|
||||
(R::zero(), R::zero())
|
||||
};
|
||||
|
||||
let (dfx_dy, dfz_dy) = if self.yp1.is_some() {
|
||||
(self.yp1.unwrap().x() - mid.x(), self.yp1.unwrap().z() - mid.z())
|
||||
} else {
|
||||
(R::zero(), R::zero())
|
||||
};
|
||||
|
||||
let (dfx_dz, dfy_dz) = if self.zp1.is_some() {
|
||||
(self.zp1.unwrap().x() - mid.x(), self.zp1.unwrap().y() - mid.y())
|
||||
} else {
|
||||
(R::zero(), R::zero())
|
||||
};
|
||||
|
||||
FieldDeltas {
|
||||
dfy_dx,
|
||||
dfz_dx,
|
||||
dfx_dy,
|
||||
dfz_dy,
|
||||
dfx_dz,
|
||||
dfy_dz,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct FieldDeltas<R> {
|
||||
dfy_dx: R,
|
||||
dfz_dx: R,
|
||||
dfx_dy: R,
|
||||
dfz_dy: R,
|
||||
dfx_dz: R,
|
||||
dfy_dz: R,
|
||||
}
|
||||
|
||||
impl<R: Real> FieldDeltas<R> {
|
||||
fn nabla(self) -> Vec3<R> {
|
||||
Vec3::new(
|
||||
self.dfz_dy - self.dfy_dz,
|
||||
self.dfx_dz - self.dfz_dx,
|
||||
self.dfy_dx - self.dfx_dy,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct StepEContext<'a, R, M> {
|
||||
pub inv_feature_size: R,
|
||||
pub time_step: R,
|
||||
pub stim_e: Vec3<R>,
|
||||
pub mat: &'a M,
|
||||
/// Input field sampled near this location
|
||||
pub in_h: VolumeSampleNeg<R>,
|
||||
pub in_e: Vec3<R>,
|
||||
}
|
||||
|
||||
impl<'a, R: Real, M: Material<R>> StepEContext<'a, R, M> {
|
||||
pub fn step_e(self) -> Vec3<R> {
|
||||
let twice_eps0 = R::twice_eps0();
|
||||
let deltas = self.in_h.delta_h();
|
||||
// \nabla x H
|
||||
let nabla_h = deltas.nabla() * self.inv_feature_size;
|
||||
// $\nabla x H = \epsilon_0 dE/dt + \sigma E$
|
||||
// no-conductivity version:
|
||||
// let delta_e = nabla_h * (self.time_step * EPS0_INV);
|
||||
let sigma = self.mat.conductivity();
|
||||
let e_prev = self.in_e;
|
||||
let delta_e = (nabla_h - e_prev.elem_mul(sigma)).elem_div(
|
||||
sigma*self.time_step + Vec3::uniform(twice_eps0)
|
||||
)*(R::two()*self.time_step);
|
||||
// println!("spirv-step_e delta_e: {:?}", delta_e);
|
||||
e_prev + delta_e + self.stim_e
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub struct StepHContext<'a, R, M> {
|
||||
pub inv_feature_size: R,
|
||||
pub time_step: R,
|
||||
pub stim_h: Vec3<R>,
|
||||
pub mat: &'a M,
|
||||
/// Input field sampled near this location
|
||||
pub in_e: VolumeSamplePos<R>,
|
||||
pub in_h: Vec3<R>,
|
||||
pub in_m: Vec3<R>,
|
||||
}
|
||||
|
||||
impl<'a, R: Real, M: Material<R>> StepHContext<'a, R, M> {
|
||||
pub fn step_h(self) -> (Vec3<R>, Vec3<R>) {
|
||||
let mu0 = R::mu0();
|
||||
let mu0_inv = R::mu0_inv();
|
||||
let deltas = self.in_e.delta_e();
|
||||
// println!("spirv-step_h delta_e_struct: {:?}", deltas);
|
||||
// \nabla x E
|
||||
let nabla_e = deltas.nabla() * self.inv_feature_size;
|
||||
// println!("spirv-step_h nabla_e: {:?}", nabla_e);
|
||||
let delta_b = nabla_e * (-self.time_step);
|
||||
|
||||
// Relation between these is: B = mu0*(H + M)
|
||||
let old_h = self.in_h;
|
||||
let old_m = self.in_m;
|
||||
let old_b = (old_h + old_m) * mu0;
|
||||
|
||||
let new_b = old_b + delta_b + self.stim_h * mu0;
|
||||
let mat = self.mat;
|
||||
let new_m = mat.move_b_vec(old_m, new_b);
|
||||
let new_h = new_b * mu0_inv - new_m;
|
||||
// println!("spirv-step_h delta_h: {:?}", delta_h);
|
||||
(new_h, new_m)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user