fold MaterialSim into GenericSim trait

This commit is contained in:
2022-07-28 22:31:47 -07:00
parent 71ab89c4c9
commit 3104c06d95
5 changed files with 156 additions and 161 deletions

View File

@@ -17,116 +17,6 @@ use spirv::{CpuBackend, SpirvSim};
pub type StaticSim = SpirvSim<f32, Vacuum, CpuBackend>;
pub trait MaterialSim: GenericSim {
type Material: PartialEq;
fn put_material<C: Coord, M: Into<Self::Material>>(&mut self, pos: C, mat: M);
fn get_material<C: Coord>(&self, pos: C) -> &Self::Material;
fn step_multiple<S: AbstractStimulus>(&mut self, num_steps: u32, s: &S);
fn step(&mut self) {
// XXX: try not to exercise this path! NoopStimulus is probably a lot of waste.
self.step_multiple(1, &NoopStimulus);
}
fn fill_region_using<C, Reg, F, M>(&mut self, region: &Reg, f: F)
where
Reg: Region,
F: Fn(C) -> M,
C: Coord,
M: Into<Self::Material>
{
for z in 0..self.depth() {
for y in 0..self.height() {
for x in 0..self.width() {
let loc = Index((x, y, z).into());
let meters = loc.to_meters(self.feature_size());
if region.contains(meters) {
self.put_material(loc, f(C::from_either(loc, meters)));
}
}
}
}
}
fn fill_region<Reg: Region, M: Into<Self::Material> + Clone>(&mut self, region: &Reg, mat: M) {
self.fill_region_using(region, |_idx: Index| mat.clone());
}
fn examine_region<C, Reg, F>(&self, region: &Reg, mut f: F)
where
Reg: Region,
F: FnMut(C, &Self::Material),
C: Coord
{
for z in 0..self.depth() {
for y in 0..self.height() {
for x in 0..self.width() {
let loc = Index((x, y, z).into());
let meters = loc.to_meters(self.feature_size());
if region.contains(meters) {
f(C::from_either(loc, meters), self.get_material(loc));
}
}
}
}
}
/// Return true if the given region is filled exclusively with the provided material.
fn test_region_filled<Reg: Region, M: Into<Self::Material> + Clone>(&self, region: &Reg, mat: M) -> bool {
let mut all = true;
self.examine_region(region, |_idx: Index, m: &Self::Material| {
all = all && m == &mat.clone().into();
});
all
}
/// Fill the boundary, where `thickness` describes how far the boundary extends in each
/// direction, and `f` takes a vec where each coordinate represents how far into the boundary
/// the location being queried is, in each direction.
/// e.g. `f((1.0, 0.0, 0.2))` means the location being queried is at either extreme end on the
/// x axis, is not inside the y axis boundary, and is 20% of the way from the onset of the z
/// boundary to the edge of the z world.
fn fill_boundary_using<C, F, M>(&mut self, thickness: C, f: F)
where
C: Coord,
F: Fn(Vec3<f32>) -> M,
M: Into<Self::Material>,
{
// TODO: maybe this function belongs on the Driver?
let feat = self.feature_size();
let upper_left = thickness.to_index(feat);
let size = self.size();
let lower_right = size - upper_left - Index::new(1, 1, 1);
let region = InvertedRegion::new(Cube::new(upper_left.to_meters(feat), lower_right.to_meters(feat)));
self.fill_region_using(&region, |loc: Index| {
let depth_x = if loc.x() < upper_left.x() {
(upper_left.x() - loc.x()) as f32 / upper_left.x() as f32
} else if loc.x() > lower_right.x() {
(loc.x() - lower_right.x()) as f32 / upper_left.x() as f32
} else {
0.0
};
let depth_y = if loc.y() < upper_left.y() {
(upper_left.y() - loc.y()) as f32 / upper_left.y() as f32
} else if loc.y() > lower_right.y() {
(loc.y() - lower_right.y()) as f32 / upper_left.y() as f32
} else {
0.0
};
let depth_z = if loc.z() < upper_left.z() {
(upper_left.z() - loc.z()) as f32 / upper_left.z() as f32
} else if loc.z() > lower_right.z() {
(loc.z() - lower_right.z()) as f32 / upper_left.z() as f32
} else {
0.0
};
// println!("{} {}", loc, Vec3::new(depth_x, depth_y, depth_z));
f(Vec3::new(depth_x, depth_y, depth_z))
});
}
}
/// Conceptually, one cell looks like this (in 2d):
///
/// +-------.-------+
@@ -219,6 +109,7 @@ impl<R: Real> CellStateWithM<R> {
// TODO: the Send/Sync bounds here could be removed with some refactoring
pub trait GenericSim: Send + Sync {
type Material;
fn meta(&self) -> SimMeta<f32>;
fn step_no(&self) -> u64;
fn sample(&self, pos: Meters) -> Sample;
@@ -226,6 +117,15 @@ pub trait GenericSim: Send + Sync {
/// Take a "snapshot" of the simulation, dropping all material-specific information.
fn to_static(&self) -> StaticSim;
fn put_material<C: Coord, M: Into<Self::Material>>(&mut self, pos: C, mat: M);
fn get_material<C: Coord>(&self, pos: C) -> &Self::Material;
fn step_multiple<S: AbstractStimulus>(&mut self, num_steps: u32, s: &S);
fn step(&mut self) {
// XXX: try not to exercise this path! NoopStimulus is probably a lot of waste.
self.step_multiple(1, &NoopStimulus);
}
fn size(&self) -> Index {
Index(self.meta().dim)
}
@@ -325,4 +225,105 @@ pub trait GenericSim: Send + Sync {
fn current<C: Coord>(&self, c: C) -> Vec3<f32> {
self.get(c).current_density() * self.feature_size() * self.feature_size()
}
fn fill_region_using<C, Reg, F, M>(&mut self, region: &Reg, f: F)
where
Reg: Region,
F: Fn(C) -> M,
C: Coord,
M: Into<Self::Material>
{
for z in 0..self.depth() {
for y in 0..self.height() {
for x in 0..self.width() {
let loc = Index((x, y, z).into());
let meters = loc.to_meters(self.feature_size());
if region.contains(meters) {
self.put_material(loc, f(C::from_either(loc, meters)));
}
}
}
}
}
fn fill_region<Reg: Region, M: Into<Self::Material> + Clone>(&mut self, region: &Reg, mat: M) {
self.fill_region_using(region, |_idx: Index| mat.clone());
}
fn examine_region<C, Reg, F>(&self, region: &Reg, mut f: F)
where
Reg: Region,
F: FnMut(C, &Self::Material),
C: Coord
{
for z in 0..self.depth() {
for y in 0..self.height() {
for x in 0..self.width() {
let loc = Index((x, y, z).into());
let meters = loc.to_meters(self.feature_size());
if region.contains(meters) {
f(C::from_either(loc, meters), self.get_material(loc));
}
}
}
}
}
/// Return true if the given region is filled exclusively with the provided material.
fn test_region_filled<Reg: Region, M>(&self, region: &Reg, mat: M) -> bool
where
M: Into<Self::Material> + Clone,
Self::Material: PartialEq,
{
let mut all = true;
self.examine_region(region, |_idx: Index, m: &Self::Material| {
all = all && m == &mat.clone().into();
});
all
}
/// Fill the boundary, where `thickness` describes how far the boundary extends in each
/// direction, and `f` takes a vec where each coordinate represents how far into the boundary
/// the location being queried is, in each direction.
/// e.g. `f((1.0, 0.0, 0.2))` means the location being queried is at either extreme end on the
/// x axis, is not inside the y axis boundary, and is 20% of the way from the onset of the z
/// boundary to the edge of the z world.
fn fill_boundary_using<C, F, M>(&mut self, thickness: C, f: F)
where
C: Coord,
F: Fn(Vec3<f32>) -> M,
M: Into<Self::Material>,
{
// TODO: maybe this function belongs on the Driver?
let feat = self.feature_size();
let upper_left = thickness.to_index(feat);
let size = self.size();
let lower_right = size - upper_left - Index::new(1, 1, 1);
let region = InvertedRegion::new(Cube::new(upper_left.to_meters(feat), lower_right.to_meters(feat)));
self.fill_region_using(&region, |loc: Index| {
let depth_x = if loc.x() < upper_left.x() {
(upper_left.x() - loc.x()) as f32 / upper_left.x() as f32
} else if loc.x() > lower_right.x() {
(loc.x() - lower_right.x()) as f32 / upper_left.x() as f32
} else {
0.0
};
let depth_y = if loc.y() < upper_left.y() {
(upper_left.y() - loc.y()) as f32 / upper_left.y() as f32
} else if loc.y() > lower_right.y() {
(loc.y() - lower_right.y()) as f32 / upper_left.y() as f32
} else {
0.0
};
let depth_z = if loc.z() < upper_left.z() {
(upper_left.z() - loc.z()) as f32 / upper_left.z() as f32
} else if loc.z() > lower_right.z() {
(loc.z() - lower_right.z()) as f32 / upper_left.z() as f32
} else {
0.0
};
// println!("{} {}", loc, Vec3::new(depth_x, depth_y, depth_z));
f(Vec3::new(depth_x, depth_y, depth_z))
});
}
}