Add [broken] conductivity support
It doesn't seem to be solved by using f64
This commit is contained in:
@@ -5,13 +5,18 @@ use std::{thread, time};
|
||||
|
||||
fn main() {
|
||||
let mut state = SimState::new(101, 101);
|
||||
|
||||
for x in 0..100 {
|
||||
state.get_mut(x, 70).mat_mut().conductivity = 0.00000001;
|
||||
}
|
||||
|
||||
let mut step = 0u64;
|
||||
loop {
|
||||
step += 1;
|
||||
let imp = 50.0 * ((step as f64)*0.05).sin() as f32;
|
||||
let imp = 50.0 * ((step as f64)*0.05).sin();
|
||||
// state.impulse_ex(50, 50, imp);
|
||||
// state.impulse_ey(50, 50, imp);
|
||||
state.impulse_bz(50, 50, imp / 3e8f32);
|
||||
state.impulse_bz(50, 50, (imp / 3.0e8) as _);
|
||||
Renderer.render(&state);
|
||||
state.step();
|
||||
thread::sleep(time::Duration::from_millis(33));
|
||||
|
94
src/lib.rs
94
src/lib.rs
@@ -21,25 +21,27 @@ pub mod consts {
|
||||
/// Also equal to 1/sqrt(epsilon_0 mu_0)
|
||||
pub const C: f32 = 299792458f32;
|
||||
// pub const Z0: f32 = 376.73031366857f32;
|
||||
// Vacuum Permeability
|
||||
// pub const Mu0: f32 = 1.2566370621219e-6; // H/m
|
||||
/// Vacuum Permeability
|
||||
pub const MU0: f32 = 1.2566370621219e-6; // H/m
|
||||
// Vacuum Permittivity
|
||||
// pub const Eps0: f32 = 8.854187812813e-12 // F⋅m−1
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct SimState {
|
||||
cells: Array2<Cell>,
|
||||
cells: Array2<Cell<GenericMaterial>>,
|
||||
}
|
||||
|
||||
impl SimState {
|
||||
pub fn new(width: usize, height: usize) -> Self {
|
||||
Self {
|
||||
cells: Array2::default((height, width))
|
||||
cells: Array2::default((height, width)),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn step(&mut self) {
|
||||
// feature size: 1mm.
|
||||
let half_time_step = 0.0005 * consts::C;
|
||||
let mut working_cells = Array2::default((self.height(), self.width()));
|
||||
// first advance all the magnetic fields
|
||||
for down_y in 1..self.height() {
|
||||
@@ -47,7 +49,7 @@ impl SimState {
|
||||
let cell = self.get(right_x-1, down_y-1);
|
||||
let right_cell = self.get(right_x, down_y-1);
|
||||
let down_cell = self.get(right_x-1, down_y);
|
||||
working_cells[[down_y-1, right_x-1]] = cell.step_b(right_cell, down_cell);
|
||||
working_cells[[down_y-1, right_x-1]] = cell.step_b(right_cell, down_cell, half_time_step);
|
||||
}
|
||||
}
|
||||
std::mem::swap(&mut working_cells, &mut self.cells);
|
||||
@@ -58,7 +60,7 @@ impl SimState {
|
||||
let cell = self.get(x, y);
|
||||
let left_cell = self.get(x-1, y);
|
||||
let up_cell = self.get(x, y-1);
|
||||
working_cells[[y, x]] = cell.step_e(left_cell, up_cell);
|
||||
working_cells[[y, x]] = cell.step_e(left_cell, up_cell, half_time_step);
|
||||
}
|
||||
}
|
||||
std::mem::swap(&mut working_cells, &mut self.cells);
|
||||
@@ -80,8 +82,11 @@ impl SimState {
|
||||
pub fn height(&self) -> usize {
|
||||
self.cells.shape()[0]
|
||||
}
|
||||
pub fn get(&self, x: usize, y: usize) -> Cell {
|
||||
self.cells[[y, x]]
|
||||
pub fn get(&self, x: usize, y: usize) -> Cell<GenericMaterial> {
|
||||
self.cells[[y, x]].clone()
|
||||
}
|
||||
pub fn get_mut(&mut self, x: usize, y: usize) -> &mut Cell<GenericMaterial> {
|
||||
&mut self.cells[[y, x]]
|
||||
}
|
||||
}
|
||||
|
||||
@@ -104,13 +109,14 @@ impl SimState {
|
||||
/// (x+1, y). The `+` only indicates the corner of the cell -- nothing of interest is measured at
|
||||
/// the pluses.
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub struct Cell {
|
||||
pub struct Cell<M> {
|
||||
ex: f32,
|
||||
ey: f32,
|
||||
bz: f32,
|
||||
mat: M,
|
||||
}
|
||||
|
||||
impl Cell {
|
||||
impl<M> Cell<M> {
|
||||
pub fn ex(&self) -> f32 {
|
||||
self.ex
|
||||
}
|
||||
@@ -120,7 +126,16 @@ impl Cell {
|
||||
pub fn bz(&self) -> f32 {
|
||||
self.bz
|
||||
}
|
||||
fn step_b(self, right: Cell, down: Cell) -> Self {
|
||||
pub fn mat(&self) -> &M {
|
||||
&self.mat
|
||||
}
|
||||
pub fn mat_mut(&mut self) -> &mut M {
|
||||
&mut self.mat
|
||||
}
|
||||
}
|
||||
|
||||
impl<M: Material + Clone> Cell<M> {
|
||||
fn step_b(self, right: Self, down: Self, _delta_t: f32) -> Self {
|
||||
// Maxwell's equation: del x E = -dB/dt
|
||||
// Expand: dE_y/dx - dE_x/dy = -dB_z/dt
|
||||
// Rearrange: dB_z/dt = dE_x/dy - dE_y/dx
|
||||
@@ -136,29 +151,62 @@ impl Cell {
|
||||
ex: self.ex,
|
||||
ey: self.ey,
|
||||
bz: self.bz + delta_bz,
|
||||
mat: self.mat,
|
||||
}
|
||||
}
|
||||
|
||||
fn step_e(self, left: Cell, up: Cell) -> Self {
|
||||
// Maxwell's equation: del x B = mu_0 eps_0 dE/dt
|
||||
// N.B: c = 1/sqrt(mu_0 eps_0) so:
|
||||
// Rearrange: dE/dt = c^2 del x B
|
||||
// Expand: dE_x/dt = c^2 dB_z/dy (1); dE_y/dt = -c^2 dB_z/dx (2)
|
||||
/// delta_t = timestep covered by this function. i.e. it should be half the timestep of the simulation
|
||||
/// since the simulation spends half a timestep in step_b and the other half in step_e.
|
||||
/// delta_x and delta_y are derived from delta_t (so, make sure delta_t is constant across all calls if the grid spacing is also constant!)
|
||||
fn step_e(self, left: Self, up: Self, delta_t: f32) -> Self {
|
||||
// Maxwell's equation: \del x B = \mu_0 (J + \eps_0 dE/dt) where J = current density = \sigma E, \sigma being a material parameter
|
||||
// Expand: \del x B = \mu_0 \sigma E + \mu_0 \eps_0 dE/dt
|
||||
// Substitute: \del x B = S + 1/c^2 dE/dt where c = 1/\sqrt{\mu_0 \eps_0} is the speed of light, and S = \mu_0 \sigma E for convenience
|
||||
// Rearrange: dE/dt = c^2 (\del x B - S)
|
||||
// Expand: dE_x/dt = c^2 (dB_z/dy - S_x) (1); dE_y/dt = c^2 (-dB_z/dx - S_y) (2)
|
||||
//
|
||||
// Discretize (1): (delta E_x)/(delta t) = c^2 (delta B_z)/(delta y)
|
||||
// Recall: (delta y)/(delta t) = 2c, as from step_b
|
||||
// Substitute: (delta E_x) = c/2 (delta B_z,y)
|
||||
// Discretize (1): (\delta E_x)/(\delta t) = c^2 (\delta B_z / \delta y - S_x)
|
||||
// Information is propagated across 1/2 \delta x where \delta x = grid spacing of cells.
|
||||
// Therefore 1/2 \delta x = c \delta t or \delta t / \delta x = 1/(2c)
|
||||
// Rearrange: \delta E_x = c^2 (\delta B_z \delta t / \delta y - \delta t S_x)
|
||||
// Rearrange: \delta E_x = c (\delta B_z/2 - c \delta t S_x)
|
||||
//
|
||||
// Discretize (2): (delta E_y)/(delta t) = -c^2 (delta B_z)/(delta x)
|
||||
// Substitute c: (delta E_y) = -c/2 (delta B_z,x)
|
||||
// Discretize (2): (\delta E_y)/(\delta t) = c^2 (-\delta B_z / \delta x - S_y)
|
||||
// Rearrange: \delta E_y = c (-\delta B_z / 2 - c \delta_t S_y)
|
||||
|
||||
let delta_bz_y = self.bz - up.bz;
|
||||
let delta_ex = (0.5f32*consts::C) * delta_bz_y;
|
||||
let static_ex = consts::MU0 * self.mat.conductivity() * self.ex;
|
||||
let delta_ex = consts::C * (0.5 * delta_bz_y - consts::C * delta_t * static_ex);
|
||||
|
||||
let delta_bz_x = self.bz - left.bz;
|
||||
let delta_ey = -(0.5f32*consts::C) * delta_bz_x;
|
||||
let static_ey = consts::MU0 * self.mat.conductivity() * self.ey;
|
||||
let delta_ey = consts::C * (-0.5 * delta_bz_x - consts::C * delta_t * static_ey);
|
||||
|
||||
Cell {
|
||||
ex: self.ex + delta_ex,
|
||||
ey: self.ey + delta_ey,
|
||||
bz: self.bz,
|
||||
mat: self.mat,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub trait Material {
|
||||
/// Return \sigma, the electrical conductivity.
|
||||
/// For a vacuum, this is zero. For a perfect conductor, \inf.
|
||||
fn conductivity(&self) -> f32 {
|
||||
0.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Default)]
|
||||
pub struct GenericMaterial {
|
||||
pub conductivity: f32,
|
||||
}
|
||||
|
||||
impl Material for GenericMaterial {
|
||||
fn conductivity(&self) -> f32 {
|
||||
self.conductivity
|
||||
}
|
||||
}
|
||||
|
@@ -55,7 +55,7 @@ impl ColorTermRenderer {
|
||||
//let g = norm_color(cell.ex());
|
||||
//let b = norm_color(cell.ey());
|
||||
//let g = norm_color(curl(cell.ex(), cell.ey()));
|
||||
let g = norm_color(cell.bz() * 3.0e8);
|
||||
let g = norm_color((cell.bz() * 3.0e8) as _);
|
||||
write!(&mut buf, "{}", RGB(r, g, b).paint(square));
|
||||
}
|
||||
write!(&mut buf, "\n");
|
||||
|
Reference in New Issue
Block a user