WIP: make the measurement type concrete

This commit is contained in:
2022-07-30 20:33:03 -07:00
parent 4361167f99
commit 60840aec36

View File

@@ -2,12 +2,11 @@ use crate::geom::{Meters, Region, Torus, WorldRegion};
use crate::real::{Real as _, ToFloat as _}; use crate::real::{Real as _, ToFloat as _};
use crate::cross::vec::Vec3; use crate::cross::vec::Vec3;
use crate::sim::AbstractSim; use crate::sim::AbstractSim;
use indexmap::IndexMap;
use serde::{Serialize, Deserialize}; use serde::{Serialize, Deserialize};
pub trait AbstractMeasurement<S>: Send + Sync { pub trait AbstractMeasurement<S>: Send + Sync {
fn eval(&self, state: &S) -> String; fn eval(&self, state: &S) -> String;
fn key_value(&self, state: &S) -> IndexMap<String, String>; fn key_value(&self, state: &S) -> Vec<Measurement>;
} }
pub fn as_dyn_measurements<S, M: AbstractMeasurement<S>>(meas: &[M]) -> Vec<&dyn AbstractMeasurement<S>> { pub fn as_dyn_measurements<S, M: AbstractMeasurement<S>>(meas: &[M]) -> Vec<&dyn AbstractMeasurement<S>> {
@@ -15,20 +14,59 @@ pub fn as_dyn_measurements<S, M: AbstractMeasurement<S>>(meas: &[M]) -> Vec<&dyn
} }
/// create one IndexMap out of several measurements /// combine several measurements
pub fn eval_multiple_kv<S>(state: &S, meas: &[&dyn AbstractMeasurement<S>]) -> IndexMap<String, String> { pub fn eval_multiple_kv<S>(state: &S, meas: &[&dyn AbstractMeasurement<S>]) -> Vec<Measurement>
let mut r = IndexMap::new(); meas.into_iter().flat_map(|m| m.key_value(state).into_iter()).collect()
for m in meas {
let other = m.key_value(state);
r.extend(other.into_iter());
}
r
} }
pub fn eval_to_vec<S>(state: &S, meas: &[&dyn AbstractMeasurement<S>]) -> Vec<Evaluated> { #[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize)]
eval_multiple_kv(state, meas).into_iter().map(|(k, v)| { pub enum MeasurementValue {
Evaluated::new(k, v) Field(Vec3<f32>),
}).collect() Float(f32),
Int(u64),
Dim(Vec3u),
}
impl From<Vec3<f32>> for MeasurementValue {
fn from(v: Vec3<f32>) -> Self {
Self::Field(v)
}
}
impl From<f32> for MeasurementValue {
fn from(v: f32) -> Self {
Self::Float(v)
}
}
impl From<u64> for MeasurementValue {
fn from(v: u64) -> Self {
Self::Int(v)
}
}
impl From<Vec3u> for MeasurementValue {
fn from(v: Vec3u) -> Self {
Self::Dim(v)
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize)]
pub struct Measurement {
name: String,
value: MeasurementValue,
/// e.g. "A" for Amps
unit: String,
}
impl Measurement {
fn new<T: Into<MeasurementValue>>(name: &str, value: T, unit: &str) -> Self {
Self {
name.to_owned(),
value: value.into(),
unit: unit.to_owned(),
}
}
fn new_unitless<T: Into<MeasurementValue>>(name: &str, value: T) -> Self {
Self::new(name, value, "")
}
} }
enum SiScale { enum SiScale {
@@ -111,11 +149,11 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Time {
fn eval(&self, state: &S) -> String { fn eval(&self, state: &S) -> String {
format!("{} (step {})", SiScale::format_short(state.time(), "s"), state.step_no()) format!("{} (step {})", SiScale::format_short(state.time(), "s"), state.step_no())
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement>
[ vec![
("step".to_string(), state.step_no().to_string()), Measurement::new_unitless("step", state.step_no()),
("time".to_string(), state.time().to_string()), Measurement::new("time", state.time(), "s"),
].into_iter().collect() ]
} }
} }
@@ -126,42 +164,11 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Meta {
fn eval(&self, state: &S) -> String { fn eval(&self, state: &S) -> String {
format!("{}x{}x{} feat: {:.1e}m", state.width(), state.height(), state.depth(), state.feature_size()) format!("{}x{}x{} feat: {:.1e}m", state.width(), state.height(), state.depth(), state.feature_size())
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
[ vec![
("width".to_string(), state.width().to_string()), Measurement::new_unitless("dim", state.dim()),
("height".to_string(), state.height().to_string()), Measurement::new("feature_size", state.feature_size(), "m"),
("depth".to_string(), state.depth().to_string()), ]
("feature_size".to_string(), state.feature_size().to_string()),
].into_iter().collect()
}
}
/// some measurement which has already been evaluated.
/// this is used particularly if we need to monomorphize a measurement (e.g. for serialization)
/// and know it won't be applied to a new/different state.
#[derive(Clone, Serialize, Deserialize)]
pub struct Evaluated(String, String);
impl Evaluated {
pub fn new<S1: Into<String>, S2: Into<String>>(key: S1, value: S2) -> Self {
Self(key.into(), value.into())
}
pub fn key(&self) -> &str {
&*self.0
}
pub fn value(&self) -> &str {
&*self.1
}
}
impl<S> AbstractMeasurement<S> for Evaluated {
fn eval(&self, _state: &S) -> String {
format!("{}: {}", self.0, self.1)
}
fn key_value(&self, _state: &S) -> IndexMap<String, String> {
[
(self.0.clone(), self.1.clone()),
].into_iter().collect()
} }
} }
@@ -193,10 +200,10 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Volume {
self.data(state), self.data(state),
) )
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
[ vec![
(format!("Vol({})", self.name), self.data(state).to_string()), Measurement::new(&format!("Vol({})", self.name), self.data(), "um^3"),
].into_iter().collect() ]
} }
} }
@@ -277,12 +284,20 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Current {
mean_current_mag, mean_current_mag,
mean_current_vec) mean_current_vec)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let (mean_current_mag, mean_current_vec) = self.data(state); let (mean_current_mag, mean_current_vec) = self.data(state);
[ vec![
(format!("Imag/cell({})", self.name), mean_current_mag.to_string()), Measurement::new(
(format!("I/cell({})", self.name), mean_current_vec.to_string()), &format!("Imag/cell({})", self.name),
].into_iter().collect() mean_current_mag,
"A",
),
Measurement::new(
&format!("/cell({})", self.name),
mean_current_vec,
"A",
),
]
} }
} }
@@ -321,11 +336,15 @@ impl<S: AbstractSim> AbstractMeasurement<S> for CurrentLoop {
let cross_sectional_current = self.data(state); let cross_sectional_current = self.data(state);
format!("I({}): {:.2e}", self.name, cross_sectional_current) format!("I({}): {:.2e}", self.name, cross_sectional_current)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let cross_sectional_current = self.data(state); let cross_sectional_current = self.data(state);
[ vec![
(format!("I({})", self.name), cross_sectional_current.to_string()), Measurement::new(
].into_iter().collect() &format!("I({})", self.name),
cross_sectional_current,
"A"
),
]
} }
} }
@@ -394,13 +413,13 @@ impl<S: AbstractSim> AbstractMeasurement<S> for MagneticLoop {
self.name, mean_directed_h, self.name, mean_directed_h,
) )
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let (mean_directed_m, mean_directed_b, mean_directed_h) = self.data(state); let (mean_directed_m, mean_directed_b, mean_directed_h) = self.data(state);
[ vec![
(format!("M({})", self.name), mean_directed_m.to_string()), Measurement::new_unitless(&format!("M({})", self.name), mean_directed_current_m),
(format!("B({})", self.name), mean_directed_b.to_string()), Beasurement::new_unitless(&format!("B({})", self.name), mean_directed_current_b),
(format!("H({})", self.name), mean_directed_h.to_string()), Beasurement::new_unitless(&format!("H({})", self.name), mean_directed_current_h),
].into_iter().collect() ]
} }
} }
@@ -434,11 +453,14 @@ impl<S: AbstractSim> AbstractMeasurement<S> for MagneticFlux {
let mean_mag = self.data(state); let mean_mag = self.data(state);
format!("Bavg({}): {:.2e}", self.name, mean_mag) format!("Bavg({}): {:.2e}", self.name, mean_mag)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let mean_mag = self.data(state); let mean_mag = self.data(state);
[ vec![
(format!("Bavg({})", self.name), mean_mag.to_string()), Measurement::new_unitless(
].into_iter().collect() &format!("Bavg({})", self.name),
mean_mag,
)
]
} }
} }
@@ -472,11 +494,13 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Magnetization {
let mean_mag = self.data(state); let mean_mag = self.data(state);
format!("Mavg({}): {:.2e}", self.name, mean_mag) format!("Mavg({}): {:.2e}", self.name, mean_mag)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let mean_mag = self.data(state); let mean_mag = self.data(state);
[ vec![
(format!("Mavg({})", self.name), mean_mag.to_string()), Measurement::new_unitless(
].into_iter().collect() &format!("Mavg({})", self.name), mean_mag
),
]
} }
} }
@@ -493,11 +517,11 @@ impl<S: AbstractSim> AbstractMeasurement<S> for MagnetizationAt {
let m = state.sample(self.0).m(); let m = state.sample(self.0).m();
format!("M{}: {:.2e}", loc(self.0), m) format!("M{}: {:.2e}", loc(self.0), m)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let m = state.sample(self.0).m(); let m = state.sample(self.0).m();
[ vec![
(format!("M{}", loc(self.0)), m.to_string()), Measurement::new_unitless(&format!("M{}", loc(self.0)), m)
].into_iter().collect() ]
} }
} }
@@ -510,11 +534,13 @@ impl<S: AbstractSim> AbstractMeasurement<S> for MagneticFluxAt {
let b = state.sample(self.0).b(); let b = state.sample(self.0).b();
format!("B{}: {:.2e}", loc(self.0), b) format!("B{}: {:.2e}", loc(self.0), b)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let b = state.sample(self.0).b(); let b = state.sample(self.0).b();
[ vec![
(format!("B{}", loc(self.0)), b.to_string()), Measurement::new_unitless(
].into_iter().collect() &format!("B{}", loc(self.0)), b
)
]
} }
} }
@@ -527,11 +553,13 @@ impl<S: AbstractSim> AbstractMeasurement<S> for MagneticStrengthAt {
let h = state.sample(self.0).h(); let h = state.sample(self.0).h();
format!("H{}: {:.2e}", loc(self.0), h) format!("H{}: {:.2e}", loc(self.0), h)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let h = state.sample(self.0).h(); let h = state.sample(self.0).h();
[ vec![
(format!("H{}", loc(self.0)), h.to_string()), Measurement::new_unitless(
].into_iter().collect() &format!("H{}", loc(self.0)), h
)
]
} }
} }
@@ -543,11 +571,13 @@ impl<S: AbstractSim> AbstractMeasurement<S> for ElectricField {
let e = state.sample(self.0).e(); let e = state.sample(self.0).e();
format!("E{}: {}", loc(self.0), e) format!("E{}: {}", loc(self.0), e)
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let e = state.sample(self.0).e(); let e = state.sample(self.0).e();
[ vec![
(format!("E{}", loc(self.0)), e.to_string()), Measurement::new_unitless(
].into_iter().collect() &format!("E{}", loc(self.0)), e
)
]
} }
} }
@@ -589,11 +619,13 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Energy {
let e = self.data(state); let e = self.data(state);
format!("U({}): {}", self.name, SiScale::format_short(e, "J")) format!("U({}): {}", self.name, SiScale::format_short(e, "J"))
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let e = self.data(state); let e = self.data(state);
[ vec![
(format!("U({})", self.name), e.to_string()), Measurement::new_unitless(
].into_iter().collect() &format!("U({})", self.name), e
)
]
} }
} }
@@ -630,10 +662,12 @@ impl<S: AbstractSim> AbstractMeasurement<S> for Power {
let power = self.data(state); let power = self.data(state);
format!("P({}): {}", self.name, SiScale::format_short(power, "W")) format!("P({}): {}", self.name, SiScale::format_short(power, "W"))
} }
fn key_value(&self, state: &S) -> IndexMap<String, String> { fn key_value(&self, state: &S) -> Vec<Measurement> {
let power = self.data(state); let power = self.data(state);
[ vec![
(format!("P({})", self.name), power.to_string()), Measurement::new(
].into_iter().collect() &format!("P({})", self.name), power, "W"
)
]
} }
} }