fdtd-coremem/crates/applications/sr_latch/src/main.rs

150 lines
8.1 KiB
Rust

//! this example creates a "set/reset" latch from a non-linear ferromagnetic device.
//! this is quite a bit like a "core memory" device.
//! the SR latch in this example is wired to a downstream latch, mostly to show that it's
//! possible to transfer the state (with some limitation) from one latch to another.
use coremem::{Driver, mat, meas};
use coremem::geom::{Coord as _, Meters, Torus};
use coremem::sim::spirv::{SpirvSim, WgpuBackend};
use coremem::sim::units::Seconds;
use coremem::stim::{CurlVectorField, ModulatedVectorField, Sinusoid, TimeVaryingExt as _};
fn main() {
coremem::init_logging();
// feature size: the side-length of each discrete grid cell to model (in Meters)
let feat_size = 20e-6f32;
// parameters used below to describe the components we construct below. units are (M, A or S).
let depth = 1600e-6;
// closest distance between the non-vacuum component and the dissipating boundary
// longer distances cause boundary reflections to be more dissipated (generally good).
let buffer_xy = 240e-6;
// length of our energy-dissipating boundary. longer distances decrease boundary reflections (good)
let boundary_xy = 500e-6;
let boundary_z = 300e-6;
// geometry parameters for the ferrite cores (modeled as torii)
let ferro_major = 320e-6;
let ferro_minor = 60e-6;
let ferro_buffer = 60e-6;
// geometry parameters for the coupling, drive, and sense wires (modeled as torii)
let wire_minor = 40e-6;
let wire_major = 160e-6;
let wire_coupling_major = 280e-6; // (ferro_minor*4 + ferro_buffer)/2 + wire_minor = 190
let peak_current = 7.5e6;
let current_duration = 6.0e-9; // half-wavelength of the sine wave
let drive_conductivity = 5e6f32;
let sense_conductivity = 5e3f32;
let half_depth = depth * 0.5;
// intermediate computed geometric parameters
let ferro_top_mid = boundary_xy + buffer_xy + wire_minor + wire_major;
let ferro_center_y = ferro_top_mid + ferro_major;
let ferro_bot_mid = ferro_center_y + ferro_major;
let height = ferro_bot_mid + wire_major + wire_minor + buffer_xy + boundary_xy;
let ferro1_left_edge = boundary_xy + buffer_xy;
let ferro1_center = ferro1_left_edge + ferro_minor + ferro_major;
let ferro1_right_edge = ferro1_center + ferro_major + ferro_minor;
let ferro2_left_edge = ferro1_right_edge + ferro_buffer;
let ferro2_center = ferro2_left_edge + ferro_minor + ferro_major;
let ferro2_right_edge = ferro2_center + ferro_major + ferro_minor;
let width = ferro2_right_edge + wire_major + wire_minor + buffer_xy + boundary_xy;
// create actual Regions from the computed parameters
let ferro1_region = Torus::new_xy(Meters::new(ferro1_center, ferro_center_y, half_depth), ferro_major, ferro_minor);
let ferro2_region = Torus::new_xy(Meters::new(ferro2_center, ferro_center_y, half_depth), ferro_major, ferro_minor);
let set_region = Torus::new_yz(Meters::new(ferro1_center, ferro_center_y - ferro_major, half_depth), wire_major, wire_minor);
let reset_region = Torus::new_yz(Meters::new(ferro1_center, ferro_center_y + ferro_major, half_depth), wire_major, wire_minor);
let coupling_region = Torus::new_xz(Meters::new(0.5*(ferro1_center + ferro2_center), ferro_center_y, half_depth), wire_coupling_major, wire_minor);
let sense_region = Torus::new_xz(Meters::new(ferro2_center + ferro_major, ferro_center_y, half_depth), wire_major, wire_minor);
let mut driver = Driver::new(SpirvSim::<f32, mat::GenericMaterial<f32>, WgpuBackend>::new(
Meters::new(width, height, depth).to_index(feat_size), feat_size
));
// mu_r=881.33, starting at H=25 to H=75.
driver.fill_region(&ferro1_region, mat::MHPgram::new(25.0, 881.33, 44000.0));
driver.fill_region(&ferro2_region, mat::MHPgram::new(25.0, 881.33, 44000.0));
driver.fill_region(&set_region, mat::IsomorphicConductor::new(drive_conductivity));
driver.fill_region(&reset_region, mat::IsomorphicConductor::new(drive_conductivity));
driver.fill_region(&coupling_region, mat::IsomorphicConductor::new(drive_conductivity));
driver.fill_region(&sense_region, mat::IsomorphicConductor::new(sense_conductivity));
// fill the edge of the simulation with a graded conductor:
// on the inside of the simulation it matches vacuum (conductivity of 0), and
// ramps up conductivity (to dissipate energy) as it approaches the edge of the simulation.
driver.add_classical_boundary(Meters::new(boundary_xy, boundary_xy, boundary_z));
// helper to schedule a stimulus at the provided start time/duration.
let mut add_drive_pulse = |region: &Torus, start, duration, amp| {
let wave = Sinusoid::from_wavelength(duration * 2.0)
.half_cycle()
.scaled(amp)
.shifted(start);
driver.add_stimulus(ModulatedVectorField::new(
CurlVectorField::new(region.clone()),
wave,
));
};
// stimuli apply some delta_E to the simulation, so we need to map our current to E:
// J=\sigma E
// dJ/dt = \sigma dE/dT
// dE/dt = dJ/dt / \sigma
// dE/dt = dI/dt / (A*\sigma)
// if I = k*sin(w t) then dE/dt = k*w cos(w t) / (A*\sigma)
// i.e. dE/dt is proportional to I/(A*\sigma), multiplied by w (or, divided by wavelength)
let peak_stim1 = peak_current/current_duration / (set_region.cross_section() * drive_conductivity);
// pulse the SET wire near the start of the simulation
add_drive_pulse(&set_region, 0.01*current_duration, current_duration, peak_stim1);
// RESET
add_drive_pulse(&reset_region, 4.0*current_duration, current_duration, peak_stim1);
// TOGGLE
add_drive_pulse(&set_region, 8.0*current_duration, current_duration, peak_stim1);
add_drive_pulse(&reset_region, 10.0*current_duration, current_duration, peak_stim1);
// TOGETHER
add_drive_pulse(&reset_region, 14.0*current_duration, current_duration, peak_stim1);
add_drive_pulse(&set_region, 14.0*current_duration, current_duration, peak_stim1);
// SET TWICE
add_drive_pulse(&set_region, 18.0*current_duration, current_duration, peak_stim1);
add_drive_pulse(&set_region, 20.0*current_duration, current_duration, peak_stim1);
let duration = 25.0*current_duration;
// measure a bunch of items of interest throughout the whole simulation duration:
driver.add_measurement(meas::CurrentLoop::new("coupling", coupling_region.clone()));
driver.add_measurement(meas::Current::new("coupling", coupling_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("sense", sense_region.clone()));
driver.add_measurement(meas::Current::new("sense", sense_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::Magnetization::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::MagneticFlux::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set", set_region.clone()));
driver.add_measurement(meas::Current::new("set", set_region.clone()));
driver.add_measurement(meas::Power::new("set", set_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("reset", reset_region.clone()));
// XXX: if you change any parameters (above), then change this prefix. otherwise simulations
// will try to load state generated by an earlier run and use it to compute the current
// (differently-parameterized) run.
let prefix = "out/applications/sr-latch/";
let _ = std::fs::create_dir_all(&prefix);
// add a state file for easy resumption
driver.add_state_file(&*format!("{}state.bc", prefix), 9600);
// serialize frames for later viewing with `cargo run --release --bin viewer`
driver.add_serializer_renderer(&*format!("{}frame-", prefix), 36000, None);
// render a couple CSV files: one very detailed and the other more sparsely detailed
driver.add_csv_renderer(&*format!("{}meas.csv", prefix), 200, None);
driver.add_csv_renderer(&*format!("{}meas-sparse.csv", prefix), 1600, None);
driver.step_until(Seconds(duration));
}