Files
fdtd-coremem/crates/applications/archive/buffer_proto2.rs
colin 99e7306ae9 make all the examples be their own binary crates
this achieves a few things:
- trivial way to get these shipped as the default nix package
- better dependency management
- ability to split large applications into multiple files

the README probably needs some updating.
2022-07-06 01:30:31 -07:00

150 lines
7.1 KiB
Rust

use coremem::{Driver, mat, meas, SpirvDriver};
use coremem::geom::{Meters, Torus};
use coremem::sim::units::Seconds;
use coremem::stim::{CurlStimulus, Sinusoid1, TimeVarying as _};
fn main() {
coremem::init_logging();
let feat_size = 40e-6f32;
let depth = 1600e-6;
let buffer_x = 240e-6;
let buffer_y = 240e-6;
// let buffer_z = 240e-6;
let ferro_major = 320e-6;
let ferro_minor = 60e-6;
let ferro_buffer = 60e-6;
let wire_minor = 40e-6;
let wire_major = 160e-6;
let wire_coupling_major = 280e-6; // (ferro_minor*4 + ferro_buffer)/2 + wire_minor = 190
let drive_conductivity = 5e6f32;
let peak_set_current = 15.0;
let peak_clock_current = 100.0;
let set_duration = 10e-9; // half-wavelength of the sine wave
let steady_time = 500e-9; // how long to wait for sets to stabilize
let clock_duration = 1e-9;
// let coupling_offsets = [0.0];
// let coupling_offsets = [-1.5*wire_minor, 1.5*wire_minor];
// let coupling_offsets = [-3.0*wire_minor, 0.0, 3.0*wire_minor];
let coupling_offsets = [-4.5*wire_minor, -1.5*wire_minor, 1.5*wire_minor, 4.5*wire_minor];
// let coupling_offsets = [-6.0*wire_minor, -3.0*wire_minor, 0.0, 3.0*wire_minor, 6.0*wire_minor];
let m_to_um = |m: f32| (m * 1e6).round() as u32;
let half_depth = depth * 0.5;
let feat_vol = feat_size * feat_size * feat_size;
let base = "buffer2-11";
let boundary_xy = 500e-6;
let boundary_z = 300e-6;
let ferro_top_mid = boundary_xy + buffer_y + wire_minor + wire_major;
let ferro_center_y = ferro_top_mid + ferro_major;
let ferro_bot_mid = ferro_center_y + ferro_major;
let height = ferro_bot_mid + buffer_y + boundary_xy;
let ferro1_left_edge = boundary_xy + buffer_x;
let ferro1_center = ferro1_left_edge + ferro_minor + ferro_major;
let ferro1_right_edge = ferro1_center + ferro_major + ferro_minor;
let ferro2_left_edge = ferro1_right_edge + ferro_buffer;
let ferro2_center = ferro2_left_edge + ferro_minor + ferro_major;
let ferro2_right_edge = ferro2_center + ferro_major + ferro_minor;
let width = ferro2_right_edge + 2.0*wire_major + 2.0*wire_minor + buffer_x + boundary_xy;
let ferro1_region = Torus::new_xy(Meters::new(ferro1_center, ferro_center_y, half_depth), ferro_major, ferro_minor);
let ferro2_region = Torus::new_xy(Meters::new(ferro2_center, ferro_center_y, half_depth), ferro_major, ferro_minor);
let set1_region = Torus::new_xz(Meters::new(ferro1_center - ferro_major, ferro_center_y, half_depth), wire_major, wire_minor);
let set2_region = Torus::new_xz(Meters::new(ferro2_center + ferro_major, ferro_center_y, half_depth), wire_major, wire_minor);
let coupling_regions: Vec<_> = coupling_offsets.iter().map(|off| {
Torus::new_xz(Meters::new(0.5*(ferro1_center + ferro2_center), ferro_center_y + off, half_depth), wire_coupling_major, wire_minor)
}).collect();
let mut driver: SpirvDriver = Driver::new_spirv(Meters::new(width, height, depth), feat_size);
driver.set_steps_per_stim(1000);
// mu_r=881.33, starting at H=25 to H=75.
driver.fill_region(&ferro1_region, mat::MHPgram::new(25.0, 881.33, 44000.0));
driver.fill_region(&ferro2_region, mat::MHPgram::new(25.0, 881.33, 44000.0));
driver.fill_region(&set1_region, mat::IsomorphicConductor::new(drive_conductivity));
driver.fill_region(&set2_region, mat::IsomorphicConductor::new(drive_conductivity));
for r in &coupling_regions {
driver.fill_region(r, mat::IsomorphicConductor::new(drive_conductivity));
}
println!("boundary: {}um; {}um", m_to_um(boundary_xy), m_to_um(boundary_z));
driver.add_classical_boundary(Meters::new(boundary_xy, boundary_xy, boundary_z));
assert!(driver.test_region_filled(&ferro1_region, mat::MHPgram::new(25.0, 881.33, 44000.0)));
assert!(driver.test_region_filled(&ferro2_region, mat::MHPgram::new(25.0, 881.33, 44000.0)));
assert!(driver.test_region_filled(&set1_region, mat::IsomorphicConductor::new(drive_conductivity)));
assert!(driver.test_region_filled(&set2_region, mat::IsomorphicConductor::new(drive_conductivity)));
for r in &coupling_regions {
assert!(driver.test_region_filled(r, mat::IsomorphicConductor::new(drive_conductivity)));
}
let mut add_drive_pulse = |region: &Torus, start, duration, amp| {
let wave = Sinusoid1::from_wavelength(amp, duration * 2.0)
.half_cycle()
.shifted(start);
driver.add_stimulus(CurlStimulus::new(
region.clone(),
wave.clone(),
region.center(),
region.axis()
));
};
// J=\sigma E
// dJ/dt = \sigma dE/dT
// dE/dt = dJ/dt / \sigma
// dE/dt = dI/dt / (A*\sigma)
// if I = k*sin(w t) then dE/dt = k*w cos(w t) / (A*\sigma)
// i.e. dE/dt is proportional to I/(A*\sigma), multiplied by w (or, divided by wavelength)
let peak_set = peak_set_current / feat_vol / (set1_region.cross_section() * drive_conductivity);
let peak_clock = peak_clock_current / feat_vol / (set1_region.cross_section() * drive_conductivity);
// SET cores
add_drive_pulse(&set1_region, 0.01*set_duration, set_duration, -peak_set);
add_drive_pulse(&set2_region, 0.01*set_duration, set_duration, peak_set);
// CLEAR core1
add_drive_pulse(&set1_region, set_duration + steady_time, clock_duration, peak_clock);
let duration = 2.5*steady_time;
for (i, r) in coupling_regions.iter().enumerate() {
driver.add_measurement(meas::CurrentLoop::new(&*format!("coupling{}", i), r.clone()));
driver.add_measurement(meas::Current::new(&*format!("coupling{}", i), r.clone()));
}
driver.add_measurement(meas::Volume::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::Magnetization::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::MagneticFlux::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::Volume::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set1", set1_region.clone()));
driver.add_measurement(meas::Current::new("set1", set1_region.clone()));
driver.add_measurement(meas::Power::new("set1", set1_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set2", set2_region.clone()));
let prefix = format!("out/{}/{}-{}setmA-{}setps-{}clkmA-{}clkps-{}um-{}xcoupling",
base,
base,
(peak_set_current * 1e3).round() as i64,
(set_duration * 1e12).round() as i64,
(peak_clock_current * 1e3).round() as i64,
(clock_duration * 1e12).round() as i64,
(feat_size * 1e6).round() as i64,
coupling_regions.len(),
);
let _ = std::fs::create_dir_all(&prefix);
driver.add_state_file(&*format!("{}/state.bc", prefix), 9600);
// driver.add_serializer_renderer(&*format!("{}/frame-", prefix), 36000, None);
driver.add_csv_renderer(&*format!("{}/meas.csv", prefix), 200, None);
driver.add_csv_renderer(&*format!("{}/meas-sparse.csv", prefix), 8000, None);
driver.step_until(Seconds(duration));
}