Files
fdtd-coremem/crates/applications/archive/buffer_proto3.rs
colin 99e7306ae9 make all the examples be their own binary crates
this achieves a few things:
- trivial way to get these shipped as the default nix package
- better dependency management
- ability to split large applications into multiple files

the README probably needs some updating.
2022-07-06 01:30:31 -07:00

172 lines
7.2 KiB
Rust

//! this example stacks buffers vertically so that we can couple them with MANY wire loops.
//! the conclusion is that denser loops gets the coupling closer to 1:1 (counteracts losses),
//! but it likely won't ever achieve amplification.
use coremem::{Driver, mat, meas, SpirvDriver};
use coremem::geom::{Meters, Torus};
use coremem::sim::units::Seconds;
use coremem::stim::{CurlStimulus, Sinusoid1, TimeVarying as _};
fn main() {
coremem::init_logging();
let feat_size = 40e-6f32;
let buffer_xy = 160e-6;
let buffer_z = 160e-6;
let boundary_xy = 320e-6;
let boundary_z = 320e-6;
let ferro_major = 640e-6;
let ferro_minor = 60e-6;
let ferro_buffer = 160e-6; // vertical space between ferros
let wire_minor = 40e-6;
let wire_set_major = 140e-6; // this just needs to exceed ferro_minor + wire_minor; less than ferro_buffer - wire_minor
let wire_coupling_major = 280e-6; // (ferro_minor*4 + ferro_buffer)/2 + wire_minor = 220
let drive_conductivity = 5e6f32;
let peak_set_current = 15.0;
let peak_clock_current = 100.0;
let set_duration = 10e-9; // half-wavelength of the sine wave
let steady_time = 500e-9; // how long to wait for sets to stabilize
let clock_duration = 1e-9;
let m_to_um = |m: f32| (m * 1e6).round() as u32;
let feat_vol = feat_size * feat_size * feat_size;
let base = "buffer3-13";
let width = 2.0*(ferro_major + wire_coupling_major + wire_minor + buffer_xy + boundary_xy);
let height = width;
let depth = 2.0*(wire_coupling_major + wire_minor + buffer_z + boundary_z);
let ferro1_center = Meters::new(0.5 * width, 0.5 * height, 0.5 * depth - ferro_minor - 0.5 * ferro_buffer);
let ferro2_center = Meters::new(0.5 * width, 0.5 * height, 0.5 * depth + ferro_minor + 0.5 * ferro_buffer);
// reserve the left/right locations for the SET wires.
let set1_center = (ferro1_center + ferro2_center) * 0.5 + Meters::new(-ferro_major, 0.0, -wire_set_major);
let set2_center = (ferro1_center + ferro2_center) * 0.5 + Meters::new(ferro_major, 0.0, wire_set_major);
let ferro1_region = Torus::new_xy(ferro1_center, ferro_major, ferro_minor);
let ferro2_region = Torus::new_xy(ferro2_center, ferro_major, ferro_minor);
let set1_region = Torus::new_xz(set1_center, wire_set_major, wire_minor);
let set2_region = Torus::new_xz(set2_center, wire_set_major, wire_minor);
let rev = 6.283185307179586;
// let coupling_angles = [0.25*rev, 0.75*rev];
// let coupling_angles = [0.125*rev, 0.25*rev, 0.375*rev, 0.625*rev, 0.75*rev, 0.875*rev];
let coupling_angles = [
0.0625*rev,
0.1250*rev, 0.1875*rev,
0.2500*rev, 0.3125*rev,
0.3750*rev, 0.4375*rev,
0.5625*rev,
0.6250*rev, 0.6875*rev,
0.7500*rev, 0.8125*rev,
0.8750*rev, 0.9375*rev,
];
let define_coupling_region = |angle: f32| -> Torus {
let ferro_center = (ferro1_center + ferro2_center) * 0.5;
let tor_center = ferro_center + Meters::new(angle.cos(), angle.sin(), 0.0) * ferro_major;
let tor_normal = Meters::new(-angle.sin(), angle.cos(), 0.0);
Torus::new(tor_center, tor_normal, wire_coupling_major, wire_minor)
};
let coupling_regions: Vec<_> = coupling_angles.iter().cloned().map(define_coupling_region).collect();
// mu_r=881.33, starting at H=25 to H=75.
let ferro_mat = mat::MHPgram::new(25.0, 881.33, 44000.0);
// let ferro_mat = mat::db::conductor(drive_conductivity);
let wire_mat = mat::IsomorphicConductor::new(drive_conductivity);
let mut driver: SpirvDriver = Driver::new_spirv(Meters::new(width, height, depth), feat_size);
driver.set_steps_per_stim(1000);
driver.fill_region(&ferro1_region, ferro_mat);
driver.fill_region(&ferro2_region, ferro_mat);
driver.fill_region(&set1_region, wire_mat);
driver.fill_region(&set2_region, wire_mat);
for r in &coupling_regions {
driver.fill_region(r, wire_mat);
}
println!("boundary: {}um; {}um", m_to_um(boundary_xy), m_to_um(boundary_z));
println!("size: {}, {}, {}", width, height, depth);
println!("ferro1: {:?}", ferro1_center);
println!("ferro2: {:?}", ferro2_center);
driver.add_classical_boundary(Meters::new(boundary_xy, boundary_xy, boundary_z));
assert!(driver.test_region_filled(&ferro1_region, ferro_mat));
assert!(driver.test_region_filled(&ferro2_region, ferro_mat));
assert!(driver.test_region_filled(&set1_region, wire_mat));
assert!(driver.test_region_filled(&set2_region, wire_mat));
for r in &coupling_regions {
assert!(driver.test_region_filled(r, wire_mat));
}
let mut add_drive_pulse = |region: &Torus, start, duration, amp| {
let wave = Sinusoid1::from_wavelength(amp, duration * 2.0)
.half_cycle()
.shifted(start);
driver.add_stimulus(CurlStimulus::new(
region.clone(),
wave.clone(),
region.center(),
region.axis()
));
};
// J=\sigma E
// dJ/dt = \sigma dE/dT
// dE/dt = dJ/dt / \sigma
// dE/dt = dI/dt / (A*\sigma)
// if I = k*sin(w t) then dE/dt = k*w cos(w t) / (A*\sigma)
// i.e. dE/dt is proportional to I/(A*\sigma), multiplied by w (or, divided by wavelength)
let peak_set = peak_set_current / feat_vol / (set1_region.cross_section() * drive_conductivity);
let peak_clock = peak_clock_current / feat_vol / (set1_region.cross_section() * drive_conductivity);
// SET cores
add_drive_pulse(&set1_region, 0.01*set_duration, set_duration, -peak_set);
add_drive_pulse(&set2_region, 0.01*set_duration, set_duration, -peak_set);
// CLEAR core1
add_drive_pulse(&set1_region, set_duration + steady_time, clock_duration, peak_clock);
let duration = 2.5*steady_time;
for (i, r) in coupling_regions.iter().enumerate() {
driver.add_measurement(meas::CurrentLoop::new(&*format!("coupling{}", i), r.clone()));
}
driver.add_measurement(meas::Volume::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::Volume::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set1", set1_region.clone()));
driver.add_measurement(meas::Power::new("set1", set1_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set2", set2_region.clone()));
let prefix = format!("out/{}/{}-{}-{}setmA-{}setps-{}clkmA-{}clkps-{}um-{}xcoupling",
base,
base,
*driver.size(),
(peak_set_current * 1e3).round() as i64,
(set_duration * 1e12).round() as i64,
(peak_clock_current * 1e3).round() as i64,
(clock_duration * 1e12).round() as i64,
(feat_size * 1e6).round() as i64,
coupling_regions.len(),
);
let _ = std::fs::create_dir_all(&prefix);
driver.add_state_file(&*format!("{}/state.bc", prefix), 16000);
// driver.add_serializer_renderer(&*format!("{}/frame-", prefix), 32000, None);
driver.add_csv_renderer(&*format!("{}/meas.csv", prefix), 200, None);
driver.add_csv_renderer(&*format!("{}/meas-sparse.csv", prefix), 8000, None);
driver.step_until(Seconds(duration));
}