Files
fdtd-coremem/examples/buffer_proto5.rs
Colin fe5eab5e43 improve verification for buffer_proto5
verify that different pieces of the sim are properly connected.
2022-01-11 14:03:46 -08:00

356 lines
14 KiB
Rust

//! this example positions buffers adjacently and uses an ASYMMETRIC coil winding.
//! v.s. the fourth prototype, it changes the couplings in an attempt to reduce unwanted
//! clock -> mem2 coupling
use coremem::{Driver, mat, meas, SpirvDriver};
use coremem::geom::{region, Cube, Dilate, Meters, Region, Spiral, SwapYZ, Torus, Translate, Wrap};
use coremem::stim::{CurlStimulus, Gated, Sinusoid1, TimeVarying1 as _};
use log::info;
#[allow(unused)]
use coremem::geom::{Coord as _, Region as _};
#[derive(Copy, Clone, Debug)]
struct Params {
feat_size: f32,
buffer_xy: f32,
buffer_z: f32,
boundary_xy: f32,
boundary_z: f32,
ferro_major: f32,
ferro_minor: f32,
ferro_buffer: f32, // horizontal space between ferros,
wire_minor: f32,
wire_wrap_minor: f32, // 2x wire_wrap_minor + feat_size must be < ferro_buffer
wire_set_major: f32,
wire_wrap_dilation: f32,
wire_wrap_iters: usize,
wraps1: f32,
wraps2: f32,
wire_conductivity: f32,
peak_set_current: f32,
peak_clock_current: f32,
set_duration: f32,
clock_duration: f32,
pre_time: f32, // how long between set and clock
post_time: f32, // how long to wait after the clock
dump_frames: Option<u64>,
}
fn run_sim(id: u32, p: Params) {
let m_to_um = |m: f32| (m * 1e6).round() as u32;
let feat_vol = p.feat_size * p.feat_size * p.feat_size;
let base = format!("buffer5-{}", id);
let width = 4.0*p.ferro_major + 2.0*(p.buffer_xy + p.boundary_xy + p.wire_set_major + p.wire_minor) + p.ferro_buffer;
let height = 2.0*(p.ferro_major + p.ferro_minor + 4.0*p.wire_wrap_minor + 12.0*p.feat_size + p.buffer_xy + p.boundary_xy);
let depth = 2.0*(p.wire_set_major.max(4.0*p.wire_wrap_minor + p.ferro_minor + p.feat_size) + p.wire_minor + p.buffer_z + p.boundary_z);
let ferro1_center = Meters::new(
p.buffer_xy + p.boundary_xy + p.wire_set_major + p.wire_minor + p.ferro_major,
p.buffer_xy + p.boundary_xy + p.ferro_major + p.ferro_minor + 4.0*p.wire_wrap_minor + 12.0*p.feat_size,
0.5*depth,
// buffer_z + boundary_z + wire_set_major + wire_minor
);
let ferro2_center = ferro1_center + Meters::new(2.0*p.ferro_major + p.ferro_buffer, 0.0, 0.0);
let ferro_center = (ferro1_center + ferro2_center)*0.5;
// reserve the left/right locations for the SET wires.
let set1_center = ferro1_center - Meters::new_x(p.ferro_major);
let set2_center = ferro2_center + Meters::new_x(p.ferro_major);
let ferro1_region = Torus::new_xy(ferro1_center, p.ferro_major, p.ferro_minor);
let ferro2_region = Torus::new_xy(ferro2_center, p.ferro_major, p.ferro_minor);
let set1_region = Torus::new_xz(set1_center, p.wire_set_major, p.wire_minor);
let set2_region = Torus::new_xz(set2_center, p.wire_set_major, p.wire_minor);
let coupling_region1 = Dilate::new_iterated(
Wrap::new_about(
Translate::new(
SwapYZ::new(region::and(
Spiral::new(p.ferro_minor + 2.0*p.wire_wrap_minor + p.feat_size, p.wire_wrap_minor, 1.0/p.wraps1),
Cube::new(Meters::new(-1.0, -1.0, -0.5), Meters::new(1.0, 1.0, 0.5))
)),
ferro1_center + Meters::new(1.0*p.ferro_major, 0.0, 0.0),
),
1.0, // one half-rev => y=1.0
ferro1_center,
),
p.wire_wrap_dilation / (p.wire_wrap_iters as f32),
p.wire_wrap_iters,
);
let coupling_region2 = Dilate::new_iterated(
Wrap::new_about(
Translate::new(
SwapYZ::new(region::and_not(
Spiral::new(p.ferro_minor + 2.0*p.wire_wrap_minor + p.feat_size, p.wire_wrap_minor, 1.0/p.wraps2),
Cube::new(Meters::new(-1.0, -1.0, -0.5), Meters::new(1.0, 1.0, 0.5))
)),
ferro2_center + Meters::new_x(p.ferro_major),
),
1.0, // one half-rev => y=1.0
ferro2_center,
),
p.wire_wrap_dilation / (p.wire_wrap_iters as f32),
p.wire_wrap_iters,
);
let coupling_wire_top = Cube::new_centered(
ferro_center - Meters::new_y(p.ferro_major + 4.0*p.wire_wrap_minor + 12.0*p.feat_size),
Meters::new(p.ferro_buffer + 2.0*p.ferro_major + 4.0*p.feat_size, 2.0*p.feat_size, 2.0*p.feat_size)
);
let coupling_wire_bot = Cube::new_centered(
ferro_center + Meters::new_y(p.ferro_major + 4.0*p.wire_wrap_minor + 12.0*p.feat_size),
Meters::new(p.ferro_buffer + 2.0*p.ferro_major + 4.0*p.feat_size, 2.0*p.feat_size, 2.0*p.feat_size)
);
let coupling_stub_top_left = Cube::new_including_negatives(
coupling_wire_top.bot_left_out(),
coupling_wire_top.bot_left_out() + Meters::new(4.0*p.feat_size, 10.0*p.feat_size, 2.0*p.feat_size)
);
let coupling_stub_top_right = Cube::new_including_negatives(
coupling_wire_top.bot_right_out(),
coupling_wire_top.bot_right_out() + Meters::new(-4.0*p.feat_size, 10.0*p.feat_size, 2.0*p.feat_size)
);
let coupling_stub_bot_left = Cube::new_including_negatives(
coupling_wire_bot.top_left_out(),
coupling_wire_bot.top_left_out() + Meters::new(4.0*p.feat_size, -10.0*p.feat_size, 2.0*p.feat_size)
);
let coupling_stub_bot_right = Cube::new_including_negatives(
coupling_wire_bot.top_right_out(),
coupling_wire_bot.top_right_out() + Meters::new(-4.0*p.feat_size, -10.0*p.feat_size, 2.0*p.feat_size)
);
let coupling_stubs = region::Union::new()
.with(coupling_stub_top_left.clone())
.with(coupling_stub_top_right.clone())
.with(coupling_stub_bot_left.clone())
.with(coupling_stub_bot_right.clone())
;
let coupling_wires = region::Union::new()
.with(coupling_wire_top.clone())
.with(coupling_wire_bot.clone())
.with(coupling_stubs.clone())
;
let coupling_region = region::Union::new()
.with(coupling_region1.clone())
.with(coupling_region2.clone())
.with(coupling_wires.clone())
;
let wrap1_with_coupling = region::union(
coupling_region1.clone(), coupling_wires.clone()
);
let wrap2_with_coupling = region::union(
coupling_region2.clone(), coupling_wires.clone()
);
// show that the coupling top/bot wires are connected through the wrapping
assert!(region::is_connected(
&wrap1_with_coupling,
coupling_wire_top.center(),
coupling_wire_bot.center(),
p.feat_size,
), "{:?}", p);
assert!(region::is_connected(
&wrap2_with_coupling,
coupling_wire_top.center(),
coupling_wire_bot.center(),
p.feat_size,
), "{:?}", p);
assert!(wrap1_with_coupling.contains(
coupling_stub_top_left.center().to_index(p.feat_size).to_meters(p.feat_size),
));
assert!(wrap1_with_coupling.contains(
coupling_stub_bot_left.center().to_index(p.feat_size).to_meters(p.feat_size),
));
assert!(wrap2_with_coupling.contains(
coupling_stub_top_right.center().to_index(p.feat_size).to_meters(p.feat_size),
));
assert!(wrap2_with_coupling.contains(
coupling_stub_bot_right.center().to_index(p.feat_size).to_meters(p.feat_size),
));
info!("wrap1 length: {}", region::distance_to(
&wrap1_with_coupling,
coupling_stub_top_left.center().to_index(p.feat_size),
coupling_stub_bot_left.center().to_index(p.feat_size),
p.feat_size,
).unwrap());
info!("wrap2 length: {}", region::distance_to(
&wrap2_with_coupling,
coupling_stub_top_right.center().to_index(p.feat_size),
coupling_stub_bot_right.center().to_index(p.feat_size),
p.feat_size,
).unwrap());
return;
// mu_r=881.33, starting at H=25 to H=75.
let ferro_mat = mat::MHPgram::new(25.0, 881.33, 44000.0);
// let ferro_mat = mat::db::conductor(wire_conductivity);
let wire_mat = mat::db::conductor(p.wire_conductivity);
let mut driver: Driver<_> = Driver::new_spirv(Meters::new(width, height, depth), p.feat_size);
driver.set_steps_per_stim(1000);
driver.fill_region(&ferro1_region, ferro_mat);
driver.fill_region(&ferro2_region, ferro_mat);
driver.fill_region(&set1_region, wire_mat);
driver.fill_region(&set2_region, wire_mat);
driver.fill_region(&coupling_region, wire_mat);
info!("boundary: {}um; {}um", m_to_um(p.boundary_xy), m_to_um(p.boundary_z));
info!("size: {}, {}, {}", width, height, depth);
info!("ferro1: {:?}", ferro1_center);
info!("ferro2: {:?}", ferro2_center);
driver.add_classical_boundary(Meters::new(p.boundary_xy, p.boundary_xy, p.boundary_z));
assert!(driver.test_region_filled(&ferro1_region, ferro_mat));
assert!(driver.test_region_filled(&ferro2_region, ferro_mat));
assert!(driver.test_region_filled(&set1_region, wire_mat));
assert!(driver.test_region_filled(&set2_region, wire_mat));
assert!(driver.test_region_filled(&coupling_region, wire_mat));
let add_drive_sine_pulse = |driver: &mut SpirvDriver, region: &Torus, start: f32, duration: f32, amp: f32| {
let wave = Sinusoid1::from_wavelength(amp, duration * 2.0)
.half_cycle()
.shifted(start);
driver.add_stimulus(CurlStimulus::new(
region.clone(),
wave.clone(),
region.center(),
region.axis()
));
};
let add_drive_square_pulse = |driver: &mut SpirvDriver, region: &Torus, start: f32, duration: f32, amp: f32| {
let wave = Gated::new(amp, start, start+duration);
driver.add_stimulus(CurlStimulus::new(
region.clone(),
wave.clone(),
region.center(),
region.axis()
));
};
let add_drive_step = |driver: &mut SpirvDriver, region: &Torus, start: f32, amp: f32| {
add_drive_square_pulse(driver, region, start, 1.0, amp);
};
// J=\sigma E
// dJ/dt = \sigma dE/dT
// dE/dt = dJ/dt / \sigma
// dE/dt = dI/dt / (A*\sigma)
// if I = k*sin(w t) then dE/dt = k*w cos(w t) / (A*\sigma)
// i.e. dE/dt is proportional to I/(A*\sigma), multiplied by w (or, divided by wavelength)
let peak_set = p.peak_set_current / feat_vol / (set1_region.cross_section() * p.wire_conductivity);
let peak_clock = p.peak_clock_current / feat_vol / (set1_region.cross_section() * p.wire_conductivity);
// SET cores
add_drive_sine_pulse(&mut driver, &set1_region, 0.01*p.set_duration, p.set_duration, -peak_set);
add_drive_sine_pulse(&mut driver, &set2_region, 0.01*p.set_duration, p.set_duration, peak_set);
// CLEAR core1
add_drive_square_pulse(&mut driver, &set1_region, p.set_duration + p.pre_time, p.clock_duration, peak_clock);
// add_drive_step(&mut driver, &set1_region, set_duration + pre_time, peak_clock);
let duration = p.set_duration + p.pre_time + p.clock_duration + p.post_time;
driver.add_measurement(meas::Volume::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem1", ferro1_region.clone()));
driver.add_measurement(meas::Volume::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::MagneticLoop::new("mem2", ferro2_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set1", set1_region.clone()));
driver.add_measurement(meas::Power::new("set1", set1_region.clone()));
driver.add_measurement(meas::CurrentLoop::new("set2", set2_region.clone()));
// driver.add_measurement(meas::CurrentLoop::new("coupling1", coupling_region1.clone()));
// driver.add_measurement(meas::CurrentLoop::new("coupling2", coupling_region2.clone()));
driver.add_measurement(meas::Current::new("couplingtop", coupling_wire_top.clone()));
driver.add_measurement(meas::Current::new("couplingbot", coupling_wire_bot.clone()));
let prefix = format!("out/{}/{}-{}-{}setmA-{}setps-{}clkmA-{}clkps-{}um-{}:{}wraps",
base,
base,
*driver.size(),
(p.peak_set_current * 1e3).round() as i64,
(p.set_duration * 1e12).round() as i64,
(p.peak_clock_current * 1e3).round() as i64,
(p.clock_duration * 1e12).round() as i64,
(p.feat_size * 1e6).round() as i64,
p.wraps1,
p.wraps2,
);
let _ = std::fs::create_dir_all(&prefix);
driver.add_state_file(&*format!("{}/state.bc", prefix), 16000);
driver.add_serializer_renderer(&*format!("{}/frame-", prefix), 32000, p.dump_frames);
driver.add_csv_renderer(&*format!("{}/meas.csv", prefix), 200, None);
driver.add_csv_renderer(&*format!("{}/meas-sparse.csv", prefix), 8000, None);
driver.step_until(duration);
}
fn main() {
coremem::init_logging();
for (i, dump_frames, wraps1, wraps2) in [
// (38, Some(1000000), 20.0, 12.0),
// (39, Some(1000000), 20.0, 8.0),
// (51, Some(1000000), 16.0, 16.0),
// (41, Some(1000000), 20.0, 20.0),
// // (42, Some(1000000), 24.0, 12.0), // FAILS auto connection check
// // (43, Some(1000000), 28.0, 12.0),
// // (44, Some(1000000), 32.0, 12.0),
// // (45, Some(1000000), 24.0, 16.0),
// // (46, Some(1000000), 24.0, 20.0),
(47, Some(1000000), 24.0, 16.0),
(48, Some(1000000), 24.0, 20.0), // passes auto connection check
(49, Some(1000000), 28.0, 16.0), // passes auto connection check
(50, Some(1000000), 28.0, 20.0), // passes auto connection check
// // (51, Some(1000000), 32.0, 16.0), // FAILS auto connection check
].iter().copied() {
run_sim(i, Params {
feat_size: 40e-6f32,
buffer_xy: 160e-6,
buffer_z: 160e-6,
boundary_xy: 320e-6,
boundary_z: 320e-6,
ferro_major: 1360e-6,
ferro_minor: 60e-6,
ferro_buffer: 1320e-6,
wire_minor: 40e-6,
wire_wrap_minor: 50e-6,
wire_set_major: 200e-6,
wire_wrap_dilation: 50e-6,
wire_wrap_iters: 3,
wraps1,
wraps2,
wire_conductivity: 5e6f32,
peak_set_current: 60.0,
peak_clock_current: 400.0,
set_duration: 0e-9,
clock_duration: 25e-9,
pre_time: 1e-9,
post_time: 275e-9,
dump_frames,
});
}
}