81 lines
2.7 KiB
Python
81 lines
2.7 KiB
Python
from datetime import datetime
|
|
from enum import EnumMeta
|
|
import typing
|
|
from typing import Dict, List, Type
|
|
|
|
from dateutil import parser
|
|
|
|
|
|
def from_json(cls, data):
|
|
"""
|
|
Converts data from a JSON parse into Python data structures.
|
|
|
|
Arguments:
|
|
|
|
cls: the template class to deserialize into
|
|
data: the data to deserialize to the class
|
|
"""
|
|
# Approach for deserialization here:
|
|
# https://stackoverflow.com/a/40639688/2319844
|
|
|
|
# If it's a forward reference, evaluate it to figure out the actual
|
|
# type. This allows for types that have to be put into a string.
|
|
if isinstance(cls, typing.ForwardRef):
|
|
cls = cls._evaluate(globals(), locals())
|
|
|
|
annotations: Dict[str, Type] = getattr(cls, '__annotations__', {})
|
|
|
|
# Handle primitive of objects
|
|
if data is None:
|
|
instance = None
|
|
# Handle generics. List[*], Dict[*, *] in particular.
|
|
elif type(cls) == typing._GenericAlias:
|
|
# Having to use this because things changed in Python 3.7.
|
|
class_name = cls._name
|
|
|
|
# This is not very elegant since it doesn't allow things which sublass
|
|
# from List or Dict. For my purposes, this doesn't matter.
|
|
if class_name == 'List':
|
|
list_type = cls.__args__[0]
|
|
instance: List[list_type] = list()
|
|
for value in data:
|
|
instance.append(from_json(list_type, value))
|
|
|
|
elif class_name == 'Dict':
|
|
key_type, val_type = cls.__args__
|
|
instance: Dict[key_type, val_type] = dict()
|
|
for key, value in data.items():
|
|
key = from_json(key_type, key)
|
|
value = from_json(val_type, value)
|
|
instance[key] = value
|
|
else:
|
|
raise Exception(
|
|
f'Trying to deserialize an unsupported type: {cls._name}')
|
|
|
|
elif cls == str or issubclass(cls, str):
|
|
instance = data
|
|
elif cls == int or issubclass(cls, int):
|
|
instance = int(data)
|
|
elif cls == bool or issubclass(cls, bool):
|
|
instance = bool(data)
|
|
elif type(cls) == EnumMeta:
|
|
if type(data) == dict:
|
|
instance = cls(data.get('_value_'))
|
|
else:
|
|
instance = cls(data)
|
|
elif cls == datetime:
|
|
if type(data) == int:
|
|
instance = datetime.fromtimestamp(data / 1000)
|
|
else:
|
|
instance = parser.parse(data)
|
|
|
|
# Handle everything else by first instantiating the class, then adding
|
|
# all of the sub-elements, recursively calling from_json on them.
|
|
else:
|
|
instance: cls = cls()
|
|
for field, field_type in annotations.items():
|
|
value = data.get(field)
|
|
setattr(instance, field, from_json(field_type, value))
|
|
|
|
return instance
|