CurrentLoop: use a better justified measurement algorithm
'course the best way to justify it is with tests: hopefully those will come shortly.
This commit is contained in:
@@ -3,6 +3,7 @@ use crate::real::{Real as _, ToFloat as _};
|
||||
use crate::cross::vec::{Vec3, Vec3u};
|
||||
use crate::sim::AbstractSim;
|
||||
use serde::{Serialize, Deserialize};
|
||||
use std::ops::AddAssign;
|
||||
|
||||
// TODO: do we really need both Send and Sync?
|
||||
pub trait AbstractMeasurement<S>: Send + Sync {
|
||||
@@ -243,6 +244,24 @@ impl Current {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: clean up these FieldSample types
|
||||
#[derive(Default)]
|
||||
struct TupleSum<T>(T);
|
||||
|
||||
impl<T0: Default + AddAssign, T1: Default + AddAssign> std::iter::Sum for TupleSum<(T0, T1)> {
|
||||
fn sum<I>(iter: I) -> Self
|
||||
where I: Iterator<Item = Self>
|
||||
{
|
||||
let mut s = Self::default();
|
||||
for TupleSum((a0, a1)) in iter {
|
||||
s.0.0 += a0;
|
||||
s.0.1 += a1;
|
||||
}
|
||||
s
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[derive(Default)]
|
||||
struct FieldSample(u32, f64, Vec3<f64>);
|
||||
|
||||
@@ -323,33 +342,30 @@ impl<R> CurrentLoop<R> {
|
||||
}
|
||||
impl<R: Region + HasCrossSection> CurrentLoop<R> {
|
||||
fn data<S: AbstractSim>(&self, state: &S) -> f32 {
|
||||
// i use a statistical lens for this:
|
||||
// 1. current is the rate of flow of charge into a surface.
|
||||
// 2. in any context where it makes sense to think of current, the current through each
|
||||
// cross-sectional **is the same**.
|
||||
// 3. each point in our 3d region belongs to exactly one cross-sectional surface.
|
||||
// 4. so, given a point: what's the expected current through the cross section it belongs to?
|
||||
// - answer: that point's current density times the cross section's area.
|
||||
// 5. average the above over the whole volume, and you get an "average current".
|
||||
//
|
||||
// we're sampling uniformly over the cell space -- not the set of cross sections.
|
||||
// - however, if all cross sections have equal area, this is equivalent.
|
||||
// sampling all points (instead of just a single point):
|
||||
// 1) removes bias from step #4: current *within* a cross section is not uniform, but if
|
||||
// we sample every point within the cross section and weight them equally, then the
|
||||
// average is the truth.
|
||||
// 2) probably combats grid quantization / artifacting.
|
||||
let FieldSample(num_samples, sum_cross_sectional_current, _current_vec) = state.map_sum_over_enumerated(&self.region, |coord: Meters, _cell| {
|
||||
// - current exists as a property of a 2d surface.
|
||||
// - the user has provided us a 3d volume which behaves as though it's an extruded surface:
|
||||
// for any point in the volume we can query the normal vector of the cross section
|
||||
// containing that point.
|
||||
// - we choose that measuring the "current" on such a volume means to measure the average
|
||||
// current through all its cross sections (for most boring materials, each
|
||||
// cross section has nearly identical current).
|
||||
// - therefore, enumerate the entire volume and compute the "net" current (the sum over
|
||||
// each cell of whatever current in that cell is along the cross-section normal).
|
||||
// then divide by the number of complete cross sections we measured, to average.
|
||||
let feature_area = state.feature_size() * state.feature_size();
|
||||
let TupleSum((net_current, cross_sections)) = state.map_sum_over_enumerated(&self.region, move |coord: Meters, _cell| {
|
||||
// `normal` represents both the size of the cross section (m^2) this cell belongs to,
|
||||
// and the normal direction of the cross section.
|
||||
let normal = self.region.cross_section_normal(coord); // [m^2]
|
||||
// calculate the amount of normal current through this specific cell
|
||||
let current_density = state.current_density(coord); // [A/m^2]
|
||||
// now we have an estimation of the entire current flowing through the cross section
|
||||
// this cell belongs to.
|
||||
let cross_sectional_current = current_density.dot(normal.cast()); // [A]
|
||||
FieldSample(1, cross_sectional_current.cast(), current_density.cast())
|
||||
let cross_sectional_current = feature_area * current_density.dot(normal.norm()); // [A]
|
||||
// keep track of how many cross sections we enumerate, since each additional cross
|
||||
// sections represents a double-count of the current.
|
||||
let num_cross_sections_filled = feature_area / normal.mag();
|
||||
TupleSum((cross_sectional_current, num_cross_sections_filled))
|
||||
});
|
||||
let mean_cross_sectional_current = sum_cross_sectional_current.cast::<f32>() / f32::from_primitive(num_samples);
|
||||
let mean_cross_sectional_current = net_current.cast::<f32>() / cross_sections;
|
||||
mean_cross_sectional_current
|
||||
}
|
||||
}
|
||||
|
@@ -107,6 +107,10 @@ pub trait Real:
|
||||
self == Self::zero()
|
||||
}
|
||||
|
||||
fn inv(self) -> Self {
|
||||
Self::one() / self
|
||||
}
|
||||
|
||||
fn zero() -> Self;
|
||||
fn one() -> Self;
|
||||
fn two() -> Self;
|
||||
|
Reference in New Issue
Block a user