Fix the conductivity error (was calculating the wrong timestep)
Also, use f64 and force them to be real.
This commit is contained in:
@@ -8,4 +8,5 @@ edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
ansi_term = "0.12"
|
||||
decorum = "0.3"
|
||||
ndarray = "0.13"
|
||||
|
@@ -6,8 +6,10 @@ use std::{thread, time};
|
||||
fn main() {
|
||||
let mut state = SimState::new(101, 101);
|
||||
|
||||
for x in 0..100 {
|
||||
state.get_mut(x, 70).mat_mut().conductivity = 0.00000001;
|
||||
for y in 70..100 {
|
||||
for x in 0..100 {
|
||||
state.get_mut(x, y).mat_mut().conductivity = 1.0.into();
|
||||
}
|
||||
}
|
||||
|
||||
let mut step = 0u64;
|
||||
|
74
src/lib.rs
74
src/lib.rs
@@ -5,6 +5,7 @@
|
||||
//!
|
||||
//! [1] https://www.eecs.wsu.edu/~schneidj/ufdtd/ufdtd.pdf
|
||||
|
||||
use decorum::R64;
|
||||
use ndarray::Array2;
|
||||
|
||||
pub mod render;
|
||||
@@ -19,12 +20,21 @@ pub mod render;
|
||||
pub mod consts {
|
||||
/// Speed of light in a vacuum; m/s.
|
||||
/// Also equal to 1/sqrt(epsilon_0 mu_0)
|
||||
pub const C: f32 = 299792458f32;
|
||||
// pub const Z0: f32 = 376.73031366857f32;
|
||||
pub const C: f64 = 299792458.0;
|
||||
// pub const Z0: f64 = 376.73031366857f32;
|
||||
/// Vacuum Permeability
|
||||
pub const MU0: f32 = 1.2566370621219e-6; // H/m
|
||||
pub const MU0: f64 = 1.2566370621219e-6; // H/m
|
||||
// Vacuum Permittivity
|
||||
// pub const Eps0: f32 = 8.854187812813e-12 // F⋅m−1
|
||||
// pub const Eps0: f64 = 8.854187812813e-12 // F⋅m−1
|
||||
pub mod real {
|
||||
use crate::R64;
|
||||
pub fn C() -> R64 {
|
||||
super::C.into()
|
||||
}
|
||||
pub fn MU0() -> R64 {
|
||||
super::MU0.into()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
@@ -41,7 +51,7 @@ impl SimState {
|
||||
|
||||
pub fn step(&mut self) {
|
||||
// feature size: 1mm.
|
||||
let half_time_step = 0.0005 * consts::C;
|
||||
let half_time_step = 0.0005 / consts::C;
|
||||
let mut working_cells = Array2::default((self.height(), self.width()));
|
||||
// first advance all the magnetic fields
|
||||
for down_y in 1..self.height() {
|
||||
@@ -49,7 +59,7 @@ impl SimState {
|
||||
let cell = self.get(right_x-1, down_y-1);
|
||||
let right_cell = self.get(right_x, down_y-1);
|
||||
let down_cell = self.get(right_x-1, down_y);
|
||||
working_cells[[down_y-1, right_x-1]] = cell.step_b(right_cell, down_cell, half_time_step);
|
||||
working_cells[[down_y-1, right_x-1]] = cell.step_b(right_cell, down_cell, half_time_step.into());
|
||||
}
|
||||
}
|
||||
std::mem::swap(&mut working_cells, &mut self.cells);
|
||||
@@ -60,19 +70,19 @@ impl SimState {
|
||||
let cell = self.get(x, y);
|
||||
let left_cell = self.get(x-1, y);
|
||||
let up_cell = self.get(x, y-1);
|
||||
working_cells[[y, x]] = cell.step_e(left_cell, up_cell, half_time_step);
|
||||
working_cells[[y, x]] = cell.step_e(left_cell, up_cell, half_time_step.into());
|
||||
}
|
||||
}
|
||||
std::mem::swap(&mut working_cells, &mut self.cells);
|
||||
}
|
||||
|
||||
pub fn impulse_ex(&mut self, x: usize, y: usize, ex: f32) {
|
||||
pub fn impulse_ex(&mut self, x: usize, y: usize, ex: f64) {
|
||||
self.cells[[y, x]].ex += ex;
|
||||
}
|
||||
pub fn impulse_ey(&mut self, x: usize, y: usize, ey: f32) {
|
||||
pub fn impulse_ey(&mut self, x: usize, y: usize, ey: f64) {
|
||||
self.cells[[y, x]].ey += ey;
|
||||
}
|
||||
pub fn impulse_bz(&mut self, x: usize, y: usize, bz: f32) {
|
||||
pub fn impulse_bz(&mut self, x: usize, y: usize, bz: f64) {
|
||||
self.cells[[y, x]].bz += bz;
|
||||
}
|
||||
|
||||
@@ -110,21 +120,21 @@ impl SimState {
|
||||
/// the pluses.
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub struct Cell<M> {
|
||||
ex: f32,
|
||||
ey: f32,
|
||||
bz: f32,
|
||||
ex: R64,
|
||||
ey: R64,
|
||||
bz: R64,
|
||||
mat: M,
|
||||
}
|
||||
|
||||
impl<M> Cell<M> {
|
||||
pub fn ex(&self) -> f32 {
|
||||
self.ex
|
||||
pub fn ex(&self) -> f64 {
|
||||
self.ex.into()
|
||||
}
|
||||
pub fn ey(&self) -> f32 {
|
||||
self.ey
|
||||
pub fn ey(&self) -> f64 {
|
||||
self.ey.into()
|
||||
}
|
||||
pub fn bz(&self) -> f32 {
|
||||
self.bz
|
||||
pub fn bz(&self) -> f64 {
|
||||
self.bz.into()
|
||||
}
|
||||
pub fn mat(&self) -> &M {
|
||||
&self.mat
|
||||
@@ -135,7 +145,7 @@ impl<M> Cell<M> {
|
||||
}
|
||||
|
||||
impl<M: Material + Clone> Cell<M> {
|
||||
fn step_b(self, right: Self, down: Self, _delta_t: f32) -> Self {
|
||||
fn step_b(self, right: Self, down: Self, _delta_t: R64) -> Self {
|
||||
// Maxwell's equation: del x E = -dB/dt
|
||||
// Expand: dE_y/dx - dE_x/dy = -dB_z/dt
|
||||
// Rearrange: dB_z/dt = dE_x/dy - dE_y/dx
|
||||
@@ -146,7 +156,7 @@ impl<M: Material + Clone> Cell<M> {
|
||||
// Simplify: delta B_z = (delta E_x)/(2c) - (delta E_y)/(2c)
|
||||
let delta_ex = down.ex - self.ex;
|
||||
let delta_ey = right.ey - self.ey;
|
||||
let delta_bz = (delta_ex - delta_ey) / (2f32*consts::C);
|
||||
let delta_bz = (delta_ex - delta_ey) / (2.0*consts::C);
|
||||
Cell {
|
||||
ex: self.ex,
|
||||
ey: self.ey,
|
||||
@@ -158,7 +168,7 @@ impl<M: Material + Clone> Cell<M> {
|
||||
/// delta_t = timestep covered by this function. i.e. it should be half the timestep of the simulation
|
||||
/// since the simulation spends half a timestep in step_b and the other half in step_e.
|
||||
/// delta_x and delta_y are derived from delta_t (so, make sure delta_t is constant across all calls if the grid spacing is also constant!)
|
||||
fn step_e(self, left: Self, up: Self, delta_t: f32) -> Self {
|
||||
fn step_e(self, left: Self, up: Self, delta_t: R64) -> Self {
|
||||
// Maxwell's equation: \del x B = \mu_0 (J + \eps_0 dE/dt) where J = current density = \sigma E, \sigma being a material parameter
|
||||
// Expand: \del x B = \mu_0 \sigma E + \mu_0 \eps_0 dE/dt
|
||||
// Substitute: \del x B = S + 1/c^2 dE/dt where c = 1/\sqrt{\mu_0 \eps_0} is the speed of light, and S = \mu_0 \sigma E for convenience
|
||||
@@ -174,13 +184,17 @@ impl<M: Material + Clone> Cell<M> {
|
||||
// Discretize (2): (\delta E_y)/(\delta t) = c^2 (-\delta B_z / \delta x - S_y)
|
||||
// Rearrange: \delta E_y = c (-\delta B_z / 2 - c \delta_t S_y)
|
||||
|
||||
use consts::real::{C, MU0};
|
||||
|
||||
let half = R64::from_inner(0.5);
|
||||
|
||||
let delta_bz_y = self.bz - up.bz;
|
||||
let static_ex = consts::MU0 * self.mat.conductivity() * self.ex;
|
||||
let delta_ex = consts::C * (0.5 * delta_bz_y - consts::C * delta_t * static_ex);
|
||||
let static_ex: R64 = MU0() * self.mat.conductivity() * self.ex;
|
||||
let delta_ex: R64 = C() * (half * delta_bz_y - C() * delta_t * static_ex);
|
||||
|
||||
let delta_bz_x = self.bz - left.bz;
|
||||
let static_ey = consts::MU0 * self.mat.conductivity() * self.ey;
|
||||
let delta_ey = consts::C * (-0.5 * delta_bz_x - consts::C * delta_t * static_ey);
|
||||
let static_ey: R64 = MU0() * self.mat.conductivity() * self.ey;
|
||||
let delta_ey: R64 = C() * (-half * delta_bz_x - C() * delta_t * static_ey);
|
||||
|
||||
Cell {
|
||||
ex: self.ex + delta_ex,
|
||||
@@ -195,18 +209,18 @@ impl<M: Material + Clone> Cell<M> {
|
||||
pub trait Material {
|
||||
/// Return \sigma, the electrical conductivity.
|
||||
/// For a vacuum, this is zero. For a perfect conductor, \inf.
|
||||
fn conductivity(&self) -> f32 {
|
||||
0.0
|
||||
fn conductivity(&self) -> f64 {
|
||||
0.0.into()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Default)]
|
||||
pub struct GenericMaterial {
|
||||
pub conductivity: f32,
|
||||
pub conductivity: f64,
|
||||
}
|
||||
|
||||
impl Material for GenericMaterial {
|
||||
fn conductivity(&self) -> f32 {
|
||||
fn conductivity(&self) -> f64 {
|
||||
self.conductivity
|
||||
}
|
||||
}
|
||||
|
@@ -29,8 +29,8 @@ fn clamp(v: f32, range: f32) -> f32 {
|
||||
v.min(range).max(-range)
|
||||
}
|
||||
|
||||
fn norm_color(v: f32) -> u8 {
|
||||
(v * 64.0 + 128.0).max(0f32).min(255f32) as u8
|
||||
fn norm_color(v: f64) -> u8 {
|
||||
(v * 64.0 + 128.0).max(0.0).min(255.0) as u8
|
||||
}
|
||||
|
||||
fn curl(x: f32, y: f32) -> f32 {
|
||||
@@ -55,7 +55,7 @@ impl ColorTermRenderer {
|
||||
//let g = norm_color(cell.ex());
|
||||
//let b = norm_color(cell.ey());
|
||||
//let g = norm_color(curl(cell.ex(), cell.ey()));
|
||||
let g = norm_color((cell.bz() * 3.0e8) as _);
|
||||
let g = norm_color((cell.bz() * 3.0e8).into());
|
||||
write!(&mut buf, "{}", RGB(r, g, b).paint(square));
|
||||
}
|
||||
write!(&mut buf, "\n");
|
||||
|
Reference in New Issue
Block a user